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Introduction

Over the course of an ordinary day, any reader of this thesis will come into contact with numerous
microcontrollers. These small electronic devices (ranging from a few millimetres to a few centimetres) are
embedded in many of the objects we use every day and quietly govern numerous aspects of our lives.
Whether the reader takes public transport to work or drives a personal car, hundreds of microcontrollers
accompany the journey, carrying out automated tasks such as controlling the vehicle’s braking system
or operating the automatic doors on a metro platform. Their presence is not limited to transportation. At
work, the coffee machine, the air conditioning system, and even computer peripherals (monitors, mice,
keyboards, . . . ) may contain dozens of them, each ensuring the proper functioning of these systems.
Household appliances are no exception : both small and large devices, such as washing machines,
refrigerators, and microwave ovens, rely on a multitude of microcontrollers. In fact, almost every room
in a home is affected : alarm clocks, radiators, thermostats, lighting systems, water heaters, and even
certain toys may contain them. Some microcontrollers are even carried on one’s personinside the mobile
phone stowed in one’s pocket 1 — or embedded within certain medical devices. Owing to their ubiquity,
microcontrollers contribute daily to the many tasks of modern life.

From the inside, a microcontroller (often abbreviated as µC) is a programmable integrated circuit
whose various components correspond to those of a highly simplified, yet complete, computer. A micro-
controller contains an arithmetic and logic unit, a set of memories – typically consisting of random-access
memory for processing the dynamic data of a program, and non-volatile memory used to store the pro-
gram or certain dataas well as several input/output devices known as pins : small metallic legs capable
of carrying an electric current to communicate with the surrounding environment (shown in Figure 1).
The environment of a microcontroller usually consists of an electronic assembly made up of multiple
components that allow interaction with the real world : sensors, which transmit information about the
physical environment to the microcontroller (such as temperature values, brightness levels, or the state of
a push button, . . . ) ; and actuators, which modify the state of the physical system when activated (lighting
an LED, rotating a motor, producing sound or heat, . . . ). A microcontroller often serves as the central
processing unit of such an assembly (or of a subcomponent when dealing with more complex networks
of circuits), coordinating the hardware’s reactions to the state of its physical environment. For this reason,
microcontrollers are frequently used to program embedded systems, governing the automation of tasks
specific to those systemsfor example, regulating the temperature of a room.

The physical resources of microcontrollers are often limited, comparable to those of a personal com-
puter from the 1980s. The clock frequency of a microcontroller rarely exceeds a few tens of megahertz,
its random-access memory is limited to a few kilobytes, and its flash memory, used to store the pro-
gram, reaches at most only a few megabytes. These resources may seem strikingly anachronistic in a

1. Although modern smartphones contain more powerful and more complex systems-on-chip, it is not uncommon for
microcontrollers to handle auxiliary tasks such as managing touchscreens or certain sensors.
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Figure 1 – A PIC microcontroller and its input/output pins (numbered 1 to 40)
Double arrows indicate pins that can be used as both input and output. Single arrows indicate pins that can be
used only as input (incoming arrow) or only as output (outgoing arrow).

world where even the most modest modern system-on-chip operates a hundred times faster and has
one hundred thousand times more memory. Nevertheless, microcontrollers continue to be widely used
in industry : their low power consumption and low purchase cost (from a few tenths of a euro to a few
tens of euros) contribute to their ubiquity in many everyday objects. In addition, a growing number of
hobbyists and do-it-yourself enthusiasts engage in programming microcontrollers, for instance to deve-
lop small circuits for home automation (automatic plant watering, lighting control, . . . ) or entertainment
(handheld game consoles, drones, LED walls, etc.). These uses, encouraged by the emergence of new
categories of connected objects, make microcontrollers a frequent choice for developing embedded solu-
tions, whether professional or amateur. Thus, driven by the Internet of Things (IoT) — for which some
forecasts estimate the number of new devices produced between 2017 and 2025 at one trillion 2 [Spa17] —
it has been projected that the global microcontroller market would have an annual growth rate of around
12% between 2016 and 2023 [⚓5] 3.

Just as the physical resources of microcontrollers resemble those of somewhat outdated conventional
computer hardware, the development practices for microcontrollers have also changed very little over
time. Microcontrollers are traditionally programmed in languages that can be considered low, or even
very low level. It is not unusual, even today, for programs intended to run on microcontrollers to be written
directly in assembly language. As a result, programming microcontrollers is a difficult task, requiring the
developer to be familiar with the instruction setoften sparse and unexpressiveof the assembly language
specific to the target microcontroller. The programmer must also know the hardware on which the
program will run in detail, since the level of hardware abstraction provided by such languages is very
limited, if not nonexistent. This extreme specialization of programs for microcontrollers makes them hard
to approach for novice programmers accustomed to higher-level languages such as Python or Java, and it
restricts portability : even a minor change of microcontroller model in the target application may require
rewriting the program code from scratch. Testing and debugging microcontroller programs is equally

2. One trillion = 1012.
3. All web references in this document are preceded by a symbol representing an anchor ⚓.
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complex and restrictive. While debugging on a personal computer is facilitated by software debuggers
that allow step-by-step simulation of execution while monitoring memory contents, and while running a
test suite on a PC can be done with a simple mouse click, development environments for microcontrollers
do not always provide the possibility of simulating execution. Moreover, such simulation can be difficult,
since the program is closely tied to its physical execution environment. Consequently, testing a program
intended for a microcontroller often means executing it directly on the actual electronic assembly for
which it was designed. Debugging, especially for hobbyist developers, often involves compiling the
program, transferring the generated executable onto the microcontroller, and simply observing whether
it behaves as expected within the real hardware assembly. This process may have to be repeated many
times until the program appears to work correctly. Such a tedious and unreliable practice is not only
extremely time-consuming but can also damage the electronic hardware in use -- for example, through
wear of the microcontroller’s limited non-volatile memory (which supports only a finite number of write
operations), or even through destruction of peripheral components (or the microcontroller’s own internal
components) if the program interacts with them incorrectly.

Within certain communities of developers familiar with microcontroller programming, the mere use
of a subset of the C language for embedded systems is sometimes regarded as high-level programming.
Compared to assembly languages, C provides a significant layer of hardware abstraction that simpli-
fies development and debugging, while also offering certain guarantees for programs (including simple
static type checks) that make them safer and less prone to bugs. As a result, the use of relatively low-
level languages such as C often represents a boundary rarely crossed by embedded systems developers,
who wish to retain precise control over resource consumption and hardware interactions in their pro-
grams. Yet many higher-level languages offer advantages that are particularly valuable in the context
of microcontroller programming. Beyond the increased expressiveness provided by paradigms such as
object-oriented or functional programming, the guarantees afforded by such languages (for instance,
static or dynamic type checking) constitute a clear benefit when programming embedded systems whose
malfunctions can have disastrous consequences. Moreover, the hardware abstractions provided by these
languages do not necessarily conflict with the careful use of limited resources. Since microcontrollers
offer little memory, it can actually be advantageous in certain cases to rely on a runtime environment that
dynamically reuses resources according to the program’s needs. For these reasons, several efforts have
been made to enable the development of embedded programs in higher-level programming languages
such as Java, Python, or Scheme. Other approaches propose specialized languages for microcontroller
programming inspired by higher-level paradigms, such as reactive functional programming [HG16] or
graphical programming [Kat10, MS17].

Moreover, general-purpose languages commonly used in programming are not necessarily suited to
the specific characteristics of developing applications for microcontrollers. Since an embedded system
must generally react quickly to various stimuli (such as a button press or a change in a sensor reading),
microcontroller programming often exposes concurrent behavior. Providing a lightweight concurrency
model tailored to such applications is therefore a significant advantage, as it simplifies the development
process. However, the concurrency model chosen for programming a microcontroller cannot systemati-
cally mirror those commonly used in programming applications for computers or mobile phones (such
as thread-based systems) because of the limited resources of microcontrollers and their intrinsic fea-
tures, notably the absence of an operating system. Less common concurrency models are better suited
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to microcontroller programming. In particular, the synchronous programming model appears especially
appropriate, given its ability to function with very few hardware resources and its simple foundation
on the synchronous hypothesis, which assumes that all components of a program execute instantaneously
and concurrently. This paradigm has the advantage of freeing the developer from concerns related to
synchronization between the various components of a program, thereby contributing to a higher level of
abstraction in the software development process.

Furthermore, programs designed for embedded systems—sometimes safety-critical—often need to
meet strict physical or behavioral constraints. Certain microcontroller applications (such as drones,
transportation systems, or specific robots) correspond to real-time systems, in which reactions to external
stimuli must occur within a given time interval. This imposed deadline is generally tied to safety requi-
rements, and ensuring the system’s reaction speed is an essential condition for the program to behave as
intended. Other constraints may concern the logical behavior of programs, for which certain invariants—
representing program correctness—can be verified. We draw partly on development practices from civil
avionics, where industrial tools derived from synchronous languages, such as SCADE [CPP17], enable
DO-178C certification of aircraft (and their embedded software). The use of formal methods (abstract
interpretation, model checking, . . . ) to verify certain program properties is also encouraged. For example,
it is now possible to replace some tests with proofs under the DO-178 standard 4. Such robust analyses are
of clear interest in the programming of critical embedded systems. Our approach, combining high-level
programming models with the synchronous dataflow paradigm, incorporates similar analyses to verify
program correctness and to check properties such as the computation time of a synchronous instant.

The ambition of this thesis is to propose a solution that bridges two worlds which may appear far
apart. On one side, the world of microcontroller programming, rich in relatively simple applications
and widely used by both hobbyists and industry, but constrained by limited hardware resources and
development practices that often provide little in the way of safety or software guarantees. On the other
side, the world of higher-level programming models, which offer abstractions that allow greater expres-
siveness and stronger safety, but tend to produce programs that are potentially more resource-intensive.
The central ambition of our approach lies in providing microcontroller developers with modern, po-
werful development techniques that enhance the guarantees associated with their programs while still
accounting for the limited capacity of the hardware in use. Our solutions are therefore designed to be
executable on extremely resource-constrained devices, with only a few kilobytes of RAM. This focus on
compatibility with limited-resource microcontrollers reflects the reality that, even today, 8-bit microcon-
trollers equipped with just a few kilobytes of RAM continue to dominate the market [SSD+17]. Moreover,
ensuring that our solutions function on such constrained hardware guarantees that our approach is
applicable to a wide range of microcontroller models, not just the more powerful—but less commonly
used—higher-end variants.

This manuscript details our solution, which is based on a series of abstractions aimed at simplifying
development processes and ensuring the correctness of programs for embedded systems. In particular,
we will focus on formalizing several aspects of our approach and on proving certain metatheoretical
properties of our solution. Much of this formalization has been mechanized through software tools, and
several proofs relating to this formalism were carried out using the Coq proof assistant [Tea19]. The source

4. Additional information on this subject is available in a document titled DO-333
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code of the programs, examples, and the proofs of the lemmas and theorems presented throughout this
manuscript are available online [⚓1].
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Structure of the manuscript

— Chapter 1 presents the classical methods of microcontroller programming, as well as prior work
aimed at increasing the expressiveness and safety of microcontroller programming. We review
the state of the art of the synchronous programming model, as well as classical techniques for
providing guarantees on synchronous programs in the field of safety-critical embedded systems.

— Chapter 2 introduces our implementation of the OCaml virtual machine, called OMicroB. This
virtual machine is designed to run on microcontrollers with severe memory constraints. Through
its portability, and by leveraging the specific features of the OCaml language and its runtime
library, OMicroB provides a first level of abstraction that enables more expressive and safer
programming of microcontrollers.

— In Chapter 3, we propose OCaLustre, a synchronous dataflow extension of the OCaml language.
Designed for microcontroller programming and inspired by the Lustre language, this extension
offers a lightweight programming model for developing concurrent behaviors in embedded sys-
tems. After presenting an overview of the language features, this chapter describes the formal
specification aspects of OCaLustre.

— In Chapter 4, we describe the main compilation steps of OCaLustre programs. This compilation
process transforms synchronous code into a sequential OCaml program, fully compatible with any
OCaml compiler, while verifying several static guarantees related to typing and the scheduling of
software components.

— In Chapter 5, we present methods for the formalization and verification of various properties deri-
ved from the language specification. We describe in particular methods that verify the consistency
of an OCaLustre program with two type systems, whose rules define the correct semantics of a
program.

— Chapter 6 describes a method for computing the worst-case execution time (WCET) of an OCa-
Lustre program. This method leverages the portability of our approach by analyzing the bytecode
file generated after compilation. We present the proof of correctness of this process before descri-
bing the software prototype that implements it.

— Chapter 7 provides a performance analysis of the different software solutions presented in this
manuscript. Based on several example programs, each implementing various features of the
OCaml language, we evaluate the memory footprint and execution speed of the OMicroB virtual
machine. We then highlight the low memory footprint of the OCaLustre synchronous extension
and analyze its execution performance.

— Chapter 8 presents several concrete applications that showcase the advantages of our different abs-
traction levels and of verifying guarantees on developed programs. These examples particularly
demonstrate the ease of describing the interactions between a microcontroller and its environ-
ment, and they confirm the adequacy of our chosen model with the limited resources of the target
devices.

— Finally, we conclude this thesis by summarizing the various approaches proposed in our work,
and by discussing possible extensions to our solutions aimed at further increasing the level of
abstraction and safety in the models considered.
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1 Preliminaries

The different layers of abstraction proposed in this thesis are based on technical and technological
choices motivated by practical considerations. This chapter provides an overview of various state-of-
the-art solutions that correspond to each of the abstraction levels considered. As we review these works,
we justify the choices made in this thesis to pursue one direction rather than another. We begin by
examining the physical composition of a microcontroller and the classical programming methods used for
developing embedded applications. We then explain our motivation to abstract the underlying hardware
through a virtual machine for a high-level language—one that is both expressive and has a runtime
environment with a small memory footprint. Our desire to provide a concurrency model that is simple
and lightweight is supported by our choice of a synchronous dataflow programming model, well suited to
the nature of microcontroller programs. Finally, we discuss different ways of verifying and guaranteeing
certain properties of the programs developed using these abstractions.

1.1 Physical and software characteristics of microcontrollers

To give the reader a sense of the specific challenges and techniques involved in microcontroller
programming, this section presents a general overview of the main hardware aspects of such generic
integrated circuits. We first describe the structure of a generic microcontroller, before addressing its
technical characteristics, and in particular its memory limitations. We also discuss classical programming
methods for microcontrollers, the development environments associated with them, and the limitations
of these development processes.

1.1.1 Composition and resources of a microcontroller

A microcontroller is composed of several elements that enable it to perform the computations re-
quired for running its dedicated programs and for interacting with the electronic circuit that forms its
environment [BV97]. The main components of a microcontroller are as follows :

— A central processing unit, or CPU (Central Processing Unit), whose role is to perform the arithmetic
and logical operations required for executing a program. The processing speed of a resource-
constrained microcontroller is generally measured in tens of MIPS 1.

— Random-access memory, or RAM, which contains the volatile, dynamic data generated during
program execution. In the context of this thesis, RAM is certainly the most limited resource :
typically only a few kilobytes on the microcontrollers we consider, it forces the developer to
carefully manage the memory consumption of their program.

— Non-volatile flash memory, used to store the program code. Although flash memory can technically
be written during program execution, it is usually treated as read-only memory (or ROM)—both
to separate code from data and because of its physical limitations. Flash memory supports only

1. Millions of instructions per second.
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a limited number of write cycles. For instance, the flash memory of an ATmega microcontroller
can withstand (according to the manufacturer’s specifications) about 10,000 write cycles, whereas
its RAM is virtually indestructible. The size of flash memory is generally ten to a hundred times
larger than that of RAM. On the microcontrollers we consider, it typically ranges from a few dozen
to a few hundred kilobytes ; for example, the ATmega328P has 32 KB of flash memory.

— Timers, which allow durations to be measured and synchronize the various electronic components
of a circuit with one another. These timers are incremented at regular time intervals. An internal
clock signal, triggered at each program instruction, determines the rate at which the timers are
incremented.

— An interrupt mechanism that, upon the occurrence of a specific internal or external stimulus,
immediately triggers the execution of a dedicated routine. External interrupts can be caused by
a change in an electrical signal on a pin (for example, pressing a push button), while internal
interrupts may be triggered by the overflow of a timer or by pulses from an internal electronic
oscillator.

— Input/output ports that allow communication with electronic components connected to the mi-
crocontroller. This communication occurs by exchanging electrical signals of varying voltage (e.g.,
0 or 5 Volts), representing the transmission of binary signals between the microcontroller and
its environment. These ports correspond to a set of metallic pins visible from the outside of the
microcontroller, onto which wires or printed circuits are soldered to connect them to external com-
ponents. Each pin of a port must usually be configured (typically by setting a bit in the register
corresponding to the relevant port) at the beginning of the program to declare it as either an input
or an output interface.

— Some input/output ports also support the reading of analog values through analog-to-digital conver-
ters (ADC). These can translate time-sampled voltage variations on a pin into an analog value.
Similarly, the translation of an internal digital signal into an external analog signal is made possible
by the presence of a digital-to-analog converter (DAC).

Figure 1.1 provides a simplified schematic representation of the relationships between the main
elements of a microcontroller. The interactions between these elements are primarily carried out via
transfers on one (or more) bidirectional buses, which, for instance, convey program instructions from
flash memory to the CPU, or write data resulting from a computation into RAM.

CPU

Flash RAMContrôleur 
d’interruptions

Ports 
d’E/S

Timers

DAC / 
ADC

BUS

Figure 1.1 – Internal structure (simplified) of a microcontroller
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Several families of microcontrollers are currently available on the market. Among them, AVR mi-
crocontrollers are widely used by hobbyist programmers thanks to their presence in Arduino/Genuino
boards [⚓15]. These boards, which integrate a microcontroller along with pre-connected electronic com-
ponents (a USB port, a reset button, a power connector, etc.), simplify the process of developing embedded
programs. The Arduino Uno board [Bad14], for instance, contains an AVR ATmega328 microcontroller,
equipped with 2 kilobytes of RAM and 32 kilobytes of flash memory. Other families of microcontrollers
with different architectures are also available, such as the STM32 line based on an ARM architecture,
which often comes with more substantial resources. PIC microcontrollers, though less well known among
hobbyists, are very commonly used in industry due to their low cost and efficiency.

As an example, the table in Figure 1.2 summarizes the physical characteristics of a selection of
microcontrollers from several families—some with extremely limited resources (less than 1 kilobyte of
RAM), and others approaching the capabilities of personal computers from the 1990s. In our context, we
focus on microcontrollers closer to the lower end of this spectrum, with relatively little flash memory
(less than 100 kilobytes) and very limited RAM (less than 8 kilobytes), such as the PIC 18F4620.

Model Architecture Flash memory RAM CPU speed Operating voltage
(KB) (B) (MIPS)

AT89C51 Intel 8051 – 8 bit 4 128 12 4 to 6 V
ATmega328P AVR – 8 bit 32 2048 20 1.8 to 5.5 V
ATmega2560 AVR – 8 bit 256 8192 16 1.8 to 5.5 V
PIC 18F4620 PIC – 8 bit 64 4096 10 2 to 5.5 V

PIC 24FJ128GA006 PIC – 16 bit 128 8192 16 2 to 3.6 V
STM32 L051C8 ARM – 32 bit 64 8192 32 1.65 to 3.6 V

STM32 F091VCT6 ARM – 32 bit 256 32768 48 2 to 3.6 V

Figure 1.2 – Some microcontrollers and their characteristics

A microcontroller is therefore structurally very close to a simplified representation of a personal
computer, but with far fewer resources. Its applications, however, differ greatly from those of conventional
PCs or even single-board computers (such as the Raspberry Pi) : it generally has neither an operating
system, nor a file system, nor standard peripherals such as a keyboard or a mouse. A microcontroller
is typically dedicated to controlling an automated task, most often in an embedded context where it
is connected only to an electronic circuit specific to that task, and where an application is executed
« bare-metal »—with no software intermediary between the hardware and the program.

1.1.2 Classical programming models for microcontrollers

Low-level programming languages

Developing an application for a microcontroller is a fairly complex task, requiring the developer
to have a solid understanding of the hardware in use. In an embedded system, the close relationship
between programs and hardware traditionally leads to the use of low-level programming languages,
which offer little or no abstraction from the hardware for application development. Applications for
embedded systems are often written in assembly language, in order to finely control hardware confi-
guration and resource consumption. As a result, the choice of microcontroller has a major influence on
the development process, since different families of available microcontrollers do not share the same
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assembly instruction set. For example, a program written for a PIC microcontroller cannot be executed
on an AVR microcontroller, and vice versa. Even physical differences between microcontrollers of the
same family can limit the portability of a program.

Relatively more portable, subsets of the C language are also widely used for programming embed-
ded applications. The greater expressiveness of C compared to assembly is valued by embedded systems
developers, while its fine-grained control over memory resources is considered essential for applications
intended to run on resource-constrained devices. Nevertheless, programs traditionally written for micro-
controllers remain limited in terms of hardware abstraction, portability, and static verification of program
properties—such as type correctness.

For example, Figure 1.3 shows the source code of a C program for an AVR ATmega328P microcon-
troller. This program emits an electrical pulse at regular intervals on pin PB5 (i.e., pin number 5 of port
B of the microcontroller), in order to make a light-emitting diode (LED) connected to it blink 2.

#ifndef F_CPU
#define F_CPU 20000000UL // clock speed 20 MHz
#endif

#include <avr/io.h>
#include <util/delay.h>

int main(void)
{
DDRB = DDRB | 0b00001000; // Configure PB5 as output
while(1)
{
PORTB = PORTB | 0b00001000; // Turn PB5 on
_delay_ms(500); // wait half a second
PORTB = PORTB ^ 0b00001000; // Turn PB5 off
_delay_ms(500); // wait half a second

}
}

Figure 1.3 – A C program for the ATmega328P microcontroller

It is important to note here the relatively poor readability of such a program : interactions with
input/output ports are carried out through binary operations that, using masks, modify the bits of
registers representing the program’s ports (DDRB configures the pins of port B as inputs or outputs, and
PORTB modifies their values). In a more complex program, even a small error in such operations can
be difficult for the developer to detect and may lead to malfunctions that could damage the electronic
circuit.

Some software libraries, such as the Arduino library, provide C primitives that slightly abstract these
operations (for example, through the use of a function like digitalWrite(), which takes as parameters the
name of a pin and the signal to emit). However, these remain quite limited and are essentially comparable
to simple macros, making programs somewhat easier to read and write, but without providing any
additional safety guarantees for the resulting code.

The portability of such a program is also very limited. For example, some AVR microcontrollers do
not use the same port names, and porting this program to a microcontroller from another family requires

2. In C, the operator ˆ corresponds to the bitwise exclusive or between two bits.



1.1. Physical and software characteristics of microcontrollers 17

significant changes specific to the chosen microcontroller. As an illustration, port register configurations
differ between AVR and PIC microcontrollers : a bit set to 1 in a port configuration register designates an
output pin on an AVR microcontroller, whereas it designates an input pin on a PIC.

Development environments

The development environments used to create and debug programs for microcontrollers are them-
selves complex and relatively inflexible. A few proprietary, generally single-platform solutions are pro-
vided by manufacturers. For example, the integrated development environment (IDE) MPLAB [⚓10]
allows programming, simulation, and transfer of programs to PIC microcontrollers. AtmelStudio [⚓8],
meanwhile, is an IDE for AVR microcontrollers that offers more or less the same features as MPLAB.
Finally, the Arduino IDE[⚓7] is a cross-platform application that allows developers to write programs
for Arduino development boards, compile them, and transfer the generated executables onto the board.
Figure 1.4 shows the very simple user interface of this software.

Figure 1.4 – The Arduino integrated development environment (IDE)

These mainstream tools are for the most part fairly modest in functionality : they can generate an
executable for the microcontroller but do not necessarily allow proper testing of the program, since the
behavior of such a program is intrinsically linked to the electronic circuit that surrounds it. More powerful
software solutions, such as the Proteus suite [⚓17], allow computer-assisted composition of electronic
circuits and simulation of microcontroller programs in executable form. Unfortunately, such software is
very expensive and relatively difficult to use, making it largely inaccessible to non-specialist developers.
It is therefore not uncommon for programmers of small embedded applications to rely instead on an
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in-situ debugging method, using the physical microcontroller directly to test their program : with a
serial connection to a computer, they analyze the program’s responses to various stimuli. This method of
debugging is long and tedious, and several errors in the program code—which could have been detected
prior to transfer to the physical hardware—may slow down the development cycle.

Programmers wishing to turn to open source solutions can use a handful of free C compilers, most of
them based on GCC, which are available on multiple platforms. For example, the avr-gcc compiler [⚓25],
together with the avr-libc standard library and the avr-binutils toolchain, provides a complete compilation
environment for AVR microcontrollers. The generated executable program can then be transferred with
the avrdude tool (AVR Downloader UploaDEr), which is distributed with the compiler. On the PIC side,
ongoing work in the sdcc compiler [⚓27] enables the translation of C source code for devices in the
PIC16 and PIC18 families. The usbpicprog tool [⚓23], meanwhile, is an open source chip programmer (i.e.,
a device that transfers a program from a computer into the flash memory of a microcontroller) for these
microcontrollers.

Microcontrollers are programmable integrated circuits equipped with limited resources and develop-
ment environments. Programming methods for microcontrollers generally reflect these constraints and
are therefore traditionally based on the use of low-level languages. As a result, such languages can dis-
courage inexperienced developers who are unfamiliar with these technologies. Developing in assembly
or C often leads to programs that are relatively long to write and that may also contain errors that are
difficult to detect.

It therefore seems appropriate to explore different programming models, inspired by the abstractions
used in developing applications for personal computers, with the goal of providing microcontroller
programming with tools that are easier to grasp. In particular, we are interested in the use of so-called
high-level languages for programming embedded applications.

1.2 Hardware abstraction and high-level languages

It is now very rare, in the more common context of programming for personal computers (or for
modern equivalent devices such as smartphones or tablets), for programs to be written directly in
assembly languages. Similarly, the use of the C language is increasingly limited to specific domains,
such as the development of system applications that, by their nature, must manipulate memory directly.
Today, it is commonplace to write applications with which users interact directly (mobile applications,
web applications, . . . ) in high-level languages, which facilitate the development of complex applications.

High-level programming languages are those whose expressive power abstracts away from the com-
putational model of the machine on which programs are executed. They provide rich control structures
and implement diverse programming paradigms that can manipulate, for example, functional values,
objects, exceptions, or continuations. These languages natively offer rich data structures, making it ea-
sier to build complex applications. Several high-level programming languages rely on static typing to
improve program safety and are based on runtime environments that provide automatic memory ma-
nagement. The debugging process of applications written in these languages is simplified by the use of
symbolic debuggers, which handle the complex data structures of the language. Finally, these high-level
languages are equipped with mechanisms that enable interoperability with low-level languages, thus
allowing direct interfacing with hardware.
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Figure 1.5 – Compilation into a native program

It therefore seems natural to consider using such languages for programming embedded systems in
order to bring the same advantages to microcontroller development, in place of the traditional assembly/C
pair. In this section, we also address the compilation of these high-level languages into non-native code,
interpretable by a virtual machine (or abstract machine) positioned between the program and the hardware.
In the following, we describe various experiments and state-of-the-art systems that enable high-level
programming on microcontrollers through this virtual machine approach.

1.2.1 The virtual machine approach

In a highly simplified view, the classical compilation process of a program consists of translating its
source code into native code, capable of being understood by the hardware on which it will be executed.
Figure 1.5 illustrates such a mechanism : source files are translated into the native language of the target
machine. In the case of low-level programming languages, this translation is relatively straightforward,
given the proximity between the language instructions and those of the hardware. Assembly is simply
a human-readable version of the processor’s binary instructions, and compiling a C program is fairly
direct (at least when one does not attempt to optimize the generated code), since the imperative control
operators of the language closely resemble those of the hardware.

Compiling programs that implement high-level programming language features (functional program-
ming, object-oriented programming, . . . ) is a more complex process. Since physical processors are only
capable of natively handling simple imperative operations, multiple transformations must be applied
during compilation in order to convert high-level features into purely imperative native code. Compilers
for high-level languages therefore manipulate numerous intermediate representations of programs, and
these representations remain the same whether the final program is intended to run on hardware with
architecture A or on hardware with a completely different architecture B.

The virtual machine approach consists of carrying the compilation process only up to the production
of a common, non-native representation of programs : the bytecode. It is then the responsibility of a virtual
machine—that is, a bytecode interpreter associated with a runtime environment—to execute the program in
this intermediate form [DS00]. This approach enables the portability of applications, since any program
translated into the language’s bytecode can be executed on any device that provides an interpreter for this
bytecode. The use of virtual machines for executing rich programs was popularized by the Java language
and its JVM (Java Virtual Machine), whose motto Write once, run anywhere 3 highlighted the ability of the
same Java bytecode to run on a wide variety of platforms.

3. Écrire une fois, exécuter partout
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Figure 1.6 – Virtual machine approach : compilation into bytecode and interpretation

Figure 1.6 illustrates how the source code of a program is compiled to be interpreted by a virtual
machine.

The bytecode of a high-level language is composed of instructions that are richer than native machine
code. As a result, a single bytecode instruction typically corresponds to a sequence of machine-language
instructions. A program translated into bytecode can therefore, thanks to this factorization, be more
compact than its equivalent in machine code. Of course, bytecode cannot be executed without its runtime
environment, and the size of this environment must also be taken into account in order to make a fair
comparison. Nevertheless, since the runtime size is fixed, the total memory footprint of a bytecode
program plus its virtual machine can, in the case of substantial programs, be smaller than that of a
program compiled into native machine code. Such compaction of the total program size is an obvious
advantage in our context, where memory resources must be used sparingly.

Moreover, using a common bytecode across all execution platforms also allows the factorization of
several program analyses, such as memory resource estimation [AGG07], computation time estimation
[SP06], vulnerability detection [LL05], or even plagiarism detection [JWC08]. Even if some analyses may
lose precision due to this factorization [LF08], the benefit remains considerable in our use case, given the
wide variety of microcontroller architectures and models.

1.2.2 Programming microcontrollers in high-level languages

A large number of projects aiming to execute high-level languages on microcontrollers have been
developed in recent years. In this section, we examine a sample of these projects, which enable the
development of programs that implement diverse programming paradigms such as object-oriented
programming or functional programming. Some of these solutions rely on native compilation models,
which generate machine code directly from a program’s source code, while others benefit from the
advantages of the virtual machine approach and its common bytecode representation.

High-level languages and native compilation models for microcontrollers

Using a high-level language does not necessarily require a virtual machine and a bytecode interpreter.
Several solutions that enable programs written in high-level languages to run on microcontrollers are
based on a compilation model that produces native code, which can be executed directly on the target
hardware without any software intermediary. Among these, it is possible to write programs in C++,
a multi-paradigm language whose proximity to C allows for good performance, for example through
the avr-g++ compiler for AVR microcontrollers, or the MPLAB XC32++ compiler, which supports C++
compilation but only for 32-bit PIC microcontrollers. The IAR Embedded Workbench compiler, meanwhile,
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allows C++ programs to be compiled for a variety of microcontroller families, including MSP microcon-
trollers, AVR microcontrollers, and STM32 microcontrollers. Nevertheless, C++ does not provide all the
abstractions offered by higher-level languages, such as automatic memory management or a safer type
system.

Several projects have also explored running programs written in the Ada language on microcontrol-
lers. Ada is an object-oriented programming language widely used in safety-critical embedded systems
(automotive, aerospace, etc.) [Reg12]. However, some of these efforts cannot offer the full benefits of
the language because of their significant memory footprint [RP19]. For instance, the AVR-Ada compiler
project [⚓24] is compatible with resource-constrained 8-bit AVR microcontrollers, but it does not sup-
port, for example, the Ravenscar profile designed for programming safe real-time systems. The GNAT
GPL compiler developed by Adacore, on the other hand, supports all language profiles but targets only
ARM-based microcontrollers, which have far greater resources.

Other high-level languages, such as Rust, are compiled into a common intermediate representation
before being translated into the machine-specific language. This representation, the bitcode of the LLVM
compiler infrastructure (historically standing for Low-Level Virtual Machine), is equivalent to a generic
low-level bytecode that can be translated into machine code for each target [Lop09]. This bitcode could
also be interpreted, although this approach is fairly uncommon. For example, a university project that
implemented a bitcode interpreter for MSP430 microcontrollers represented an original attempt [Cam16],
though the prototype suffered from noticeable slowness. Other ongoing work includes compiling Rust
programs to AVR microcontrollers using the LLVM backend for AVR [⚓26]. Another project aims to
execute programs written in a subset of the Go language on any target supported by LLVM [⚓28].
Unfortunately, microcontroller support within the LLVM project remains very limited : apart from the
ongoing work on AVR, only certain ARM-based microcontrollers are supported, and support for PIC
microcontrollers, for instance, was abandoned in 2011.

High-level languages and their virtual machines on microcontrollers

Solutions based on a virtual machine approach appear to us to be the most effective way of providing,
in a straightforward manner, a higher-level programming model for resource-constrained microcon-
trollers. Such approaches increase the portability of programs, thanks to the genericity of the bytecode
generated during compilation, which abstracts away from the specific hardware on which the virtual
machine is executed. To illustrate the advantages of this approach, in this section we describe a repre-
sentative sample of different projects that implement virtual machines for microcontrollers from various
families.

Java on AVR and MSP : Thanks to its popularity, the richness of its applications, and its philosophy
of program portability, the Java language is an obvious candidate for the use of a high-level language
on microcontrollers. As a result, several projects and experiments have been conducted to port the Java
Virtual Machine (JVM [LYBB14]). These projects enable embedded application developers to benefit
from Java’s rich language features, which include object-oriented, imperative, and more recently func-
tional programming paradigms, along with its static typing with nominal subtyping, and the extensive
class library provided by the language (the Java API), which makes it easy to represent advanced data
structures.
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For example, the industrial solution microEJ [⚓16] allows Java programs to run on development
boards containing microcontrollers, most of them based on ARM architectures. The Darjeeling system
[BCL08], meanwhile, provides a multi-threaded Java virtual machine capable of executing Java bytecode
on AVR128 and MSP430 microcontrollers, which contain between 1 and 8 kilobytes of RAM and between
16 and 128 kilobytes of flash memory. Other solutions, such as HaikuVM [⚓13] or NanoVM [⚓14], enable
the execution of Java bytecode on microcontrollers used in Arduino development boards.

However, the richness of the Java language can sometimes be incompatible with these solutions
designed for resource-constrained machines. Java manipulates relatively large data structures, themselves
composed of many objects. A program written in a standard Java style, making heavy use of objects and
complex data types, can consume large amounts of memory that may simply not be available on such
devices. The example of Java Card [Gut97], a system designed to execute Java programs on smart cards,
illustrates this difficulty : version 2 of Java Card can run on hardware with only 2 KB of RAM and 64
KB of ROM, but lacks a garbage collector, does not support multitasking, and is restricted to relatively
simple data types (for instance, it does not support multidimensional arrays or collection classes). Version
3 of Java Card addresses these shortcomings, but at the cost of much higher resource consumption : it
requires 24 KB of RAM and at least 128 KB of ROM. Similarly, the TinyVM project [HPK+09], initially
designed to create a low-footprint Java virtual machine for RCX microcontrollers (used in programmable
Lego Mindstorm bricks) for sensor network development, was eventually integrated into the LeJOS project
[LHS10]. While LeJOS offered richer functionality, it was also more resource-hungry.

Python on STM32 : MicroPython [Bel17] is an implementation of the Python 3 language designed
primarily to run on the pyboard, which contains an STM32F405RG microcontroller with a Cortex-M4
processor clocked at 168 MHz, 1024 KB of flash memory, and 192 KB of RAM. MicroPython allows the
execution of Python 3 programs, offering the advantages and features of the language : its clear syn-
tax, accessible even to beginners, its object-oriented design, and certain high-level features (such as list
comprehensions) that enable the concise development of complex programs. MicroPython is based on
CPython, the reference implementation of the language, which provides a bytecode interpreter for trans-
lated Python programs. A particularly interesting feature of MicroPython is its ability to communicate
with a REPL (Read-Eval-Print-Loop) running on the microcontroller itself [VVF18]. This feature enables
quick testing and facilitates debugging.

MicroPython targets microcontrollers with relatively rich resources, well beyond the devices consi-
dered in this thesis. The lower limit of technical capabilities required for running the MicroPython
interpreter is about 16 KB of RAM and 256 KB of program memory. Other work has also produced
Python interpreters for microcontrollers [BSR12], but these too target more capable devices : Cortex-M3
microcontrollers clocked at least at 50 MHz, with at least 64 KB of RAM and 512 KB of flash memory.
Finally, the projects python-on-a-chip [⚓12], followed by PyMite [Hal03], now discontinued, allowed Py-
thon programs to run on smaller microcontrollers (with about 50 KB of flash memory and less than 8
KB of RAM recommended for program execution). However, this came at the cost of severe limitations :
only a subset of Python 2.5 was supported, and no standard library was provided. Overall, the body of
work on Python also illustrates the difficulty of porting all the features of a multi-paradigm language to
hardware with very limited resources.
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Scheme on PIC : Scheme is a functional programming language derived from Lisp. Scheme is highly
expressive, thanks for example to its macro system, as well as its explicit manipulation of continuations in
programs via the call-with-current-continuation (call/cc) construct. There exist numerous implementations
of Scheme targeting personal computers. These implementations are based on specifications (the so-called
Revised Reports on the Algorithmic Language Scheme or RnRS, where n corresponds to the revision number)
that define the features of the language. Not all of these implementations (for instance Bigloo [⚓18]) rely
on a virtual machine, but some, such as Guile [⚓22] (an implementation of Scheme conforming to the
R6RS standard), do so by translating Scheme code into bytecode composed of 175 different instructions,
executed by an interpreter written in C.

A few virtual machines capable of executing subsets of the Scheme language on resource-constrained
microcontrollers have been developed. Among them, BIT [DF05] and PICBIT [FD03] enable execution of
the R4RS standard on microcontrollers with less than 8 KB of RAM and 64 KB of program memory, while
the PICOBIT system [SF09] supports Scheme programs written in subsets of R5RS, executable on PIC18
devices with as little as 1 KB of RAM and 6 KB of ROM. Because of its lightweight nature, Scheme thus
appears particularly well-suited to resource-limited devices.

OCaml on PIC : OCaml is a language that combines multiple programming paradigms. Since its incep-
tion, it has incorporated features of object-oriented, functional, modular, and imperative programming.
This diversity of paradigms allows expressive and convenient development of complex programs. Its
strong static type system, combined with type inference, ensures at compile time that programs are free
of inconsistencies in the use of typed values.

The standard virtual machine of OCaml, known as the ZAM and derived from the ZINC machine
[Ler90], is a stack-based machine built on a uniform representation of data. The bytecode associated
with the OCaml VM consists of 148 instructions, which include classical operators for computation and
branching, as well as instructions dedicated to the manipulation and application of functional values.

The OCaPIC project [VWC15] is an implementation of the standard OCaml virtual machine for
programming PIC18 microcontrollers. OCaPIC makes it possible to execute the full OCaml language on
microcontrollers with very limited resources (4 KB of RAM and 64 KB of flash memory). This ability to
run the entire OCaml language on such constrained devices is remarkable, and it highlights both the
lightweight nature of the OCaml virtual machine and the strength of the optimizations provided by this
implementation.

In addition, OCaPIC provides several tools to improve the development of OCaml programs for mi-
crocontrollers, including in particular ocamlclean, a tool that statically removes unused closure allocations
from programs, as well as a set of simulators that simplify debugging of developed programs.

Figure 1.7 is a Venn diagram representing the various technologies discussed in this section.

The table in Figure 1.8 summarizes the main characteristics of the approaches presented. Virtual machine–
based approaches have several advantages for microcontroller programming. They provide features
from high-level languages, with which modern application developers are familiar, while also potentially
reducing the memory footprint of programs thanks to the factorization inherent in representing programs
as bytecode. Nevertheless, some of these virtual machines are not particularly well suited to use on
resource-constrained microcontrollers, which may have only a few kilobytes of RAM and less than a



24 Chapitre 1. Preliminaries

Microcontrôleurs

LLVM

Java (Darjeeling, 
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Python (MicroPython, 
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(…)
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Figure 1.7 – Microcontrollers, virtual machines, and high-level languages

hundred kilobytes of flash memory. Memory limitations can restrict the use of all aspects of a program.
Moreover, most of these solutions are often not very portable : they tend to target a specific range of
microcontrollers, and adapting them to a different architecture can be difficult.

In our work, we consider the approach adopted by OCaPIC to be the most suitable for programming
microcontrollers. The OCaml virtual machine is lightweight enough to support execution of the full
language on microcontrollers with quite limited memory resources, while the language itself provides
significant advantages, such as greater program safety through static typing and automatic memory
management. However, like most of the solutions discussed in this section, OCaPIC is quite limited in
portability, as it is available only for PIC18 microcontrollers. In the next chapter, we therefore propose a
generic OCaml virtual machine, designed to run on a wide range of targets, while maintaining a small
memory footprint and satisfactory execution speed for a rich language.

1.3 Synchronous programming

The role of a microcontroller is to act as the conductor of an electronic circuit : it must react to stimuli
from the electronic components to which it is connected (sensors, buttons, . . . ) in order to send signals to
other components of the circuit (LCD screens, actuators, . . . ). For example, inside a computer keyboard,
a microcontroller reacts in an imperceptibly short time to the various key presses made by the user.
Programs for microcontrollers often require the hardware to react quickly to input signals, regardless of
the order in which they occur : pressing certain keys on the keyboard should not, for instance, mask the
simultaneous pressing of another key. Thus, microcontroller programming is inherently concurrent : the
software components of an embedded program that handle signals from the system’s environment must
generally appear to react at the same time.
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Language Implementation VM / Interpreter? Microcontroller (family)
Java JVM yes -

Darjeeling yes AVR, MSP
NanoVM yes AVR
HaikuVM yes AVR
MicroEJ yes ARM

Python CPython yes -
MicroPython yes STM32

Scheme Guile yes -
BIT yes Motorola 68HC11

PICBIT yes PIC18
PICOBIT yes PIC18

OCaml ZAM yes -
OCaPIC yes PIC18

Ada GNAT no STM32
AVR-Ada no AVR

C++ avr-g++ no AVR
IAR no AVR, MSP, STM32

MPLAB XC32++ no PIC32, SAM
C, Go, Rust, . . . LLVM generally no AVR, MSP

(intermediate representation)

Figure 1.8 – Implementations of programming languages on microcontrollers

Embedded systems, sometimes safety-critical, therefore exhibit concurrent behaviors subject to more
or less strict timing constraints. Such systems are often described as real-time systems.

1.3.1 Real-time systems

A real-time system is a computer system in which the reaction and computation times of the different
program components (called tasks) are subject to constraints that must be respected. These tasks handle
the stimuli that the program is supposed to respond to, concurrently, as they occur. Such stimuli may
arise during program execution either periodically or sporadically.

Building real-time systems introduces the notion of scheduling, which consists in defining the order
in which the different tasks of a program will be executed (generally in a cyclic manner), taking into
account the constraints associated with them (such as their frequency, priority, or deadline).

In the case of periodic tasks, program scheduling can be performed statically, prior to program
execution : it is then possible to use software tools such as Cheddar [SLNM04] to automatically establish
(if one exists) an execution order of the program’s tasks that satisfies their timing constraints. Figure
1.9 shows an example of scheduling performed by Cheddar for three different periodic tasks. In a
system containing only periodic tasks and without preemption, the execution of a program can simply
correspond to sequential calls to the functions representing each task, for example by traversing a table
that represents the scheduling sequence.

For sporadic tasks, which handle the occurrence of occasional events, scheduling cannot be performed
« offline » (during program design), since the timing of such events is not predictable. Scheduling of the
different tasks of a program is therefore carried out dynamically, as events that the program must react
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Figure 1.9 – Static scheduling of three periodic tasks with Cheddar

to occur. However, the schedulability of the system can still be guaranteed statically provided that the
minimum interval between two occurrences of sporadic events of the same type is known.

A real-time program generally corresponds to a system that combines periodic stimuli with sporadic
events. As a result, real-time systems make use of software schedulers, included in real-time operating
systems (RTOS) such as FreeRTOS [GPPT16], which run alongside the program and dynamically assign
control to tasks based, for instance, on their priority levels and the occurrence of events.

Static or dynamic scheduling methods, as well as the use of real-time operating systems, are relatively
demanding and can be difficult to implement on certain devices : the memory resources required to run
the software components responsible for scheduling and creating concurrent tasks are non-negligible, and
may not be available on the microcontrollers we consider (which typically provide only a few kilobytes
of memory). Moreover, even when a program has been proven schedulable, unforeseen errors may still
occur due to concurrent access to resources shared by multiple tasks in a program, using synchronization
primitives (mutual exclusion, synchronization barriers, etc.). This is the case, for example, with priority
inversion phenomena, where a lower-priority task monopolizes a shared resource and never yields it to
a higher-priority task. Such issues can have serious consequences : the program of PathFinder, NASA’s
space probe sent to Mars in 1997, encountered a priority inversion problem just a few days after landing,
which caused several unexpected software resets [Jon97] 4.

In the context of this thesis, we adopt a simpler concurrency model that can guarantee that such
unforeseen behaviors cannot occur. This model, synchronous programming, has proven effective for pro-
gramming safety-critical embedded systems (aircraft, nuclear power plants, . . . ), and in our view re-
presents a suitable solution for concurrent programming of microcontrollers [VVC16]. The synchronous

4. A patch sent from Earth was nevertheless able to fix the problem.
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programming model allows concurrent aspects of a program to be represented without requiring the
use of a software system responsible for task management. Indeed, synchronous programming can be
regarded as a real-time programming model with static and deterministic scheduling, which does not rely
on an embedded software scheduler. Nevertheless, it can also be used in contexts where schedulers are
present, for example after compilation of synchronous components into periodic tasks executed on real-
time platforms [PFB+11]. The lightweight nature of this approach—producing programs that can run on
hardware without any operating system—makes it a paradigm particularly well-suited to programming
resource-constrained microcontrollers.

1.3.2 The synchronous hypothesis

The simplicity and expressive power of the synchronous programming paradigm rest on a principle
of abstraction known as the synchronous hypothesis, which states that the time taken by the different
components of a program to compute output values from input values is considered to be zero. This
hypothesis is comparable to abstractions used in circuit design (as noted in [BB91]) : the time required
for an electrical signal to pass through a set of logic gates is generally ignored when designing circuits.
Similarly, in Newtonian mechanics, the propagation speed of a gravitational field (i.e., the speed of light)
is not considered, and interactions between bodies are treated as instantaneous.

In a synchronous program, the program’s inputs are therefore assumed to be instantaneous with
its outputs, and all instructions are considered to be executed within the same logical instant, called a
synchronous instant. Of course, for this hypothesis to hold, either the interval between two inputs must
be guaranteed to be sufficient, or a buffer must be used to ensure that no inputs are lost.

The abstraction introduced by the synchronous hypothesis is illustrated in Figure 1.10. It shows that
the actual execution time of the code needed to process the inputs and produce the outputs (top of the
figure) is abstracted away : the outputs on are produced « at the same time » as the arrival of the inputs in
(bottom of the figure).

temps

o0 ono2

exécution réelle

in

o1

i0 i1 i2

temps

o0 ono2o1

i0

abstraction
synchrone

instant synchrone

ini1 i2

Figure 1.10 – The synchronous hypothesis :
The time required to compute output values (on) from input values (in) in a program is considered to

be zero.

The execution of a synchronous program is a cyclic task that, at each instant, consists of reading
the program’s inputs (typically values coming from the system’s environment) and computing output
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values to be emitted at the end of the instant. The synchronous hypothesis is satisfied as long as, at each
instant, the interval between two program inputs is greater than the computation time of the output
values. The program is thus synchronized with its inputs, and it can be considered that its reaction time
is instantaneous.

The synchronous hypothesis thus simplifies reasoning about the concurrent aspects of a program by
removing, from the developer’s perspective, the temporal considerations involved in synchronizing the
different software components of an application.

1.3.3 Esterel : an imperative synchronous programming language

The synchronous programming model emerged in the early 1980s, and one of the first languages
to implement this model was created by a team of researchers at the École des Mines and INRIA
Sophia-Antipolis. This language, called Esterel [BC84], is based on an imperative style in which the
various components of a program communicate by broadcasting signals, potentially valued, that allow
the exchange of information between concurrent components of a program. The Esterel language, whose
control-flow semantics are driven by the occurrence of events during program execution, was initially
designed with the aim of programming industrial robots at a high level of abstraction.

An Esterel program consists of several modules, each responsible for a specific task. The body of a
module is imperative-style code containing standard operators such as sequencing (;) and conditionals
(if), to which synchronous operators are added, including a parallel composition operator (||) as well
as operators for emitting (emit) or waiting for (await) signals.

A common example of Esterel programming is shown in Figure 1.11. This example defines a module
named ABRO, whose role is to wait, in parallel, for the presence of a signal A and a signal B before emitting
a signal O. The presence of signal R resets the program’s behavior.

module ABRO:

% Interface
input A, B, R;
output O;

% Body
loop
[ await A || await B ];
emit O

each R
end module

Figure 1.11 – Example of an Esterel program : the ABRO module

Beyond the programming of industrial embedded systems, Esterel’s event-driven model is now used
to program a variety of applications. For example, the programming language ReactiveML [MP05] is a
synchronous reactive extension of OCaml that incorporates many aspects of the Esterel language. Like
Esterel, it is based on a model of signal emission and reception, and it is designed for programming rich
applications that take advantage of the concurrent features offered by the synchronous programming
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paradigm. ReactiveML programs span a wide range of uses, including musical applications, games,
simulations of physical systems, and more classical algorithmic applications.

For instance, the ReactiveML program shown in Figure 1.12, taken from the official ReactiveML
website [⚓21], performs a breadth-first traversal of a binary tree by concurrently executing the traversal
of the tree’s left and right subtrees.

(* Definition of binary trees. *)
type ’a tree =
| Empty
| Node of ’a * ’a tree * ’a tree

(* Breadth first traveral. *)
let rec process iter_breadth f t =
match t with
| Empty -> ()
| Node (x, l, r) ->

f x;
pause;
run (iter_breadth f l) || run (iter_breadth f r)

Figure 1.12 – Example of a ReactiveML program

Synchronous reactive programming is also well suited to applications in emerging domains, such as
web application development. For example, the Pendulum language [SC16b] combines the algorithmic
aspects of OCaml with a synchronous reactive model inspired by Esterel for the development of rich
multimedia web applications. It relies on the Js_of_OCaml engine [VB14], which translates the bytecode
of an OCaml program into a JavaScript application.

1.3.4 Lustre and Signal : declarative synchronous programming languages

Around the same time as the development of Esterel, other synchronous programming languages
were created, though they were based on different models. In particular, the language Lustre [CPHP87]
also emerged in the early 1980s, developed by researchers at the VERIMAG laboratory in Grenoble.
Unlike Esterel, this synchronous programming language is not based on reacting to discrete events,
but on a data-flow programming model, which represents the evolution of values over time. Lustre was
originally designed to provide a programming language usable by control engineers accustomed to the
declarative formalism of data-flow models [Hal05].

Following the model of the Lucid language [AW77] 5, all values manipulated by a Lustre program
are data flows : sequences of values that may vary during program execution. Each flow thus has, by
default, a value at every instant of the program, and this value may change from one synchronous instant
to the next. Consequently, a variable x in Lustre corresponds to the flow of all values taken by x instant
by instant :

x ≡ (x0, x1, x2, x3, . . . , xi . . . )

A constant therefore corresponds to an invariant flow of values :

5. LUSTRE was originally an acronym for « LUcid Synchrone Temps RéEl » (Lucid Real-Time Synchronous).
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2 ≡ (2, 2, 2, 2, . . . , 2, . . . )

The arithmetic and logical operators of the language are applied pointwise to the values taken by the
flows during program execution :

x + y ≡ (x0 + y0, x1 + y1, x2 + y2, x3 + y3, . . . , xi + yi, . . . )

Similar to Esterel modules, the basic software component of a Lustre program is the node. A node can
be seen as a function that associates output flows with input flows. The body of a node is a system of
equations, akin to temporal functions [CH86], which declare variables whose values may change at each
execution instant. Each of these flows is computed within the same synchronous instant, and Lustre’s
synchronous data-flow model can be regarded as a restricted class of Kahn Process Networks (KPN
[Kah74]), in which communications can be performed without buffers [MPP10].

The declarative style of a Lustre program is quite similar to the structure of a functional program : each
equation defines a variable whose value depends on the current instant, and the system of equations
forming the body of a node is essentially a set of variable declarations. Imperative considerations of
program execution are absent from the semantics of the language : the reading order of the equations
does not reflect their order of computation.

For example, Figure 1.13 defines a node named BOOLOPS, which takes as input two boolean flows, A and
B, and produces as output the flows ANDB, ORB, and XORB, corresponding respectively to the computations
A ∧ B, A ∨ B, and A ⊕ B.

node BOOLOPS (A:bool ; B:bool) returns (ANDB:bool; ORB:bool; XORB:bool);
let
XORB = ORB and (not ANDB);
ANDB = if A then B else false;
ORB = if A then true else B;

tel;

Figure 1.13 – A Lustre node that computes the logical “and”, “or”, and “exclusive or” of its
inputs

In the original version of Lustre, the available operators include the standard arithmetic and logical
operators, as well as several temporal operators :

— The memory operator pre, which provides access to the value of a flow at the previous instant :

pre a ≡ (nil, a0, a1, a2, . . . , ai−1, . . . )

— The initialization operator ->, which allows the definition of a flow by specifying one value for
the first instant and another flow of values for the subsequent instants :

a -> b ≡ (a0, b1, b2, . . . , bi, . . . )

For example, one can define in Lustre the sequence of positive integers as follows :

n = 0 -> pre n + 1
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– Finally, the sampling operator when, which allows components of the program to be slowed down
by conditioning the presence of flows on boolean values (the clocks) :

(a when x)n ≡
an if xn = true

⊥ otherwise

Here, the symbol ⊥ represents the absence of a value.
Each Lustre data flow is implicitly associated with a clock, which by default is the global

(fastest) clock. It can be explicitly restricted to a slower clock using the when operator. For example,
the following code snippet forces the flow x to be defined only when b is true :

x = 4 when b;

The table in Figure 1.14 shows a simulation of the execution of these three operators :

instant 0 1 2 3 4 5 . . .

c true false true true false true . . .

x x0 x1 x2 x3 x4 x5 . . .

y y0 y1 y2 y3 y4 y5 . . .

pre y nil y0 y1 y2 y3 y4 . . .

x -> pre y x0 y0 y1 y2 y3 y4 . . .

x when c x0 ⊥ x2 x3 ⊥ x5 . . .

Figure 1.14 – The temporal operators of Lustre

The compilation of a Lustre program, known as single-loop compilation, consists in transforming the
program into a sequential program containing a single loop. This loop polls the values of its input flows
at the beginning of each synchronous instant, computes the values of its output flows, and emits these
values at the end of the instant.

Signal

Based on a declarative model similar to Lustre, the language Signal [GG87] is a synchronous data-flow
programming language designed for real-time systems. Developed in the 1980s by a team at the IRISA
laboratory in Rennes, it was the third major synchronous language developed in France at that time.

Signal is a relational language that combines, in a sense, Lustre’s data-flow perspective with Esterel’s
event-driven notion of signals. In Signal, a program defines signals (in an equational form similar to
Lustre), which are viewed as sequences of data whose values are not necessarily present at every instant
of program execution.

To represent such absence, Signal shares with Lustre the notion of a clock : the set of instants during
which a signal has a value corresponds to its clock. Signal introduces the concept of synchronicity, which
allows one to specify that two signals share the same clock and are therefore synchronous, using the
operator ^=.



32 Chapitre 1. Preliminaries

Signal defines temporal operators that are quite similar to those of Lustre. For example, the when
operator behaves like its Lustre counterpart, and the $ operator, placed after the name of a signal,
corresponds to Lustre’s pre. For instance, one can define a counter COUNT that increments at each instant
and is reset whenever a RESET event occurs, as follows :

(| COUNT := 0 when RESET default COUNT$ init 0 + 1 |)

The default operator allows one to define a value for COUNT when RESET is absent (it belongs to the
so-called polychronous operators, since it applies to signals whose clocks may differ), while the init
keyword specifies the initialization value of a signal at the first instant of execution.

Figure 1.15 shows a Signal process (equivalent to a Lustre node) named COUNTERS, which takes as input
a signal (denoted by the symbol « ? ») named RESET, and returns two output signals (denoted by « ! »)
called CPT1 and CPT2. The first is an increasing counter, initialized to 0 ; the second is a decreasing counter,
initialized to 100. Both can be reset whenever the RESET signal is present. The expression CPT1 ^= CPT2
enforces that these two signals share the same clock.

process COUNTERS =
( ? event RESET;
! integer CPT1;
integer CPT2;

)
(| CPT1 := 0 when RESET default CPT1$ init 0 + 1
| CPT2 := 100 when RESET default CPT2$ init 100 - 1
| CPT1 ^=CPT2
|);

Figure 1.15 – A Signal process

Derived synchronous languages

A few years after the creation of Lustre, the core of the language was reused to define a set of industrial
tools called SCADE [CPP17], which enables the graphical programming of synchronous systems by re-
presenting program components as sheets. This software suite is now widely used in critical applications,
for example in the control systems of Airbus A300-series aircraft. Its adoption relies on a key feature of
SCADE : the presence of a code generator, named KCG, which has received DO-178C Level A certification
[⚓2], required for producing safety-critical embedded code intended for flight. This certification frees
the development process from the obligation to carry out extensive testing to verify the correctness of
the generated code, representing a significant advantage for the use of SCADE [PAM+09].

This factorization of certification means that developers of an application only need to demonstrate
traceability from the requirements specification to the SCADE program, rather than down to the executed
code itself. Similarly, other KCG certifications allow SCADE to be used in the programming of systems
with high safety requirements, such as the European EN 50128 standard for railway transportation, the
international IEC 61508 standard for programmable components of electronic systems, and IEC 60880,
which concerns the control systems of nuclear power plants.

Many academic synchronous languages, inspired by the data-flow model and in particular by Lustre
(which itself continues to evolve in version 6), have been developed since its introduction. Among these



1.3. Synchronous programming 33

Figure 1.16 – A SCADE sheet
(image taken from [CHP06])

languages, Lucid Synchrone [CP99, Pou06] stands out as a higher-order extension of Lustre : in Lucid
Synchrone, the parameters of nodes can themselves be synchronous nodes. Lucid Synchrone represents
a powerful combination of Lustre-style synchronous languages and ML-style functional languages : for
example, flows may correspond to values of product types, which can then be processed using pattern-
matching operators. Several constructs from this language (signals, flow initialization analysis, state
machines, clock systems, etc.) have since been integrated into SCADE.

let node iter init f x = y where

rec y = f x (init -> pre y)

Figure 1.17 – Un nœud Lucid Synchrone qui itère une fonction f sur un flot de valeurs x

Other synchronous languages aim to extend the Lustre model. For example, the Heptagon language,
developed by the PARKAS team at the École Normale Supérieure, includes an optimized representation
of arrays of values [GGPP12], as well as an extension (called BZR) that integrates discrete controller
synthesis (DCS) into the compilation of a synchronous program [DRM11]. The hybrid language Zélus
[BP13], developed by the same team, derives from Lustre and Lucid Synchrone and combines notions of
discrete time and continuous time through the use of ordinary differential equations.

In the context of our work, we consider the data-flow approach adopted by these synchronous
languages to be particularly well suited to the hardware and applications we target. Indeed, the physical
behavior of the hardware can be naturally represented by flows : each pin of a microcontroller has a value
at any given moment (indicating whether or not it carries an electrical current), and each component of the
application can thus be represented by a synchronous node that computes, at each instant, output current
values from the electrical stimuli received as inputs by the microcontroller. The schematic representation
used by the SCADE language, reminiscent of an electronic circuit diagram, clearly illustrates this close
correspondence between the model adopted by a language such as Lustre and the underlying physical
model. Moreover, Lustre’s standard compilation model produces code that is resource-efficient and thus
well adapted to the hardware limitations we consider.
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1.4 Program Safety

Safety is the guarantee that a particular undesirable event cannot occur [Lam77]. More specifically,
the safety of a program refers to the assurance that an abnormal or unexpected behavior cannot arise
during its execution [AS87]. Such guarantees may concern various aspects of program behavior — for
example, ensuring that protected memory regions are not accessed during execution [ACR+08], or that
errors related to the illegal dereferencing of null pointers cannot occur while a program is running. In
this sense, safety guarantees allow a developer to ensure that their program cannot reach states that fail
to satisfy a desired property (such as the absence of runtime errors).

These guarantees are especially valuable in the programming of embedded systems, where undesi-
rable program behavior can lead to disastrous consequences [WDS+10]. A critical embedded system that
reacts unpredictably may cause serious accidents, which must be prevented at all costs. Yet the low-level
programming models typically used for microcontroller development offer few guarantees to ensure the
consistency of program behavior. Errors that could have been detected statically may go unnoticed at
compile time in traditional languages. For instance, the weak type-checking of the C language permits
incongruous, often unintended operations, such as multiplying an integer by the value of a character.

The use of higher-level programming languages often makes it possible to detect, at compile time,
many errors that might otherwise appear during execution, thereby rejecting incorrect programs before
they run (even if this sometimes results in rejecting certain programs that would have been correct).
In this manuscript, we focus in particular on guarantees related to type safety, the calculation of the
worst-case execution time of programs, and methods for formally specifying a language and developing
its associated metatheory.

1.4.1 Static Typing

Many high-level programming languages, such as Haskell, Java, or OCaml, implement a mechanism
of static typing. This consists in associating a type (that is, information about the nature of the values
carried by a variable or object) with each identifier at compile time [Pie02]. This mechanism makes it
possible to check, before program execution, for errors arising from the use of operators or functions that
are incompatible with the types of the data to which they are applied. Static typing therefore increases
type safety by rejecting incorrect programs during compilation.

As a result, the use of a statically typed programming language such as OCaml is a significant
advantage for programming embedded systems, which may sometimes be safety-critical : the additional
detection of typing errors at compile time helps prevent inappropriate physical reactions in programs,
such as powering dangerous electronic components (for example, heating resistors, which can exceed
200 degrees Celsius when switched on). In the next chapter, in Section 2.3.3, we will see an example that
uses advanced typing features (through GADTs — Generalized Algebraic Data Types) to represent low-level
interactions by leveraging OCaml’s expressive static type system.

Similarly, the type systems of domain-specific languages, such as Lustre, can further enhance program
safety. Indeed, the synchronous clock type system of Lustre and its derivatives makes it possible to
explicitly state the conditions governing the presence of certain values, and thus statically prevents
attempts to read a value from an absent flow. Furthermore, the higher level of abstraction provided by
synchronous programming languages allows additional guarantees to be checked during their various
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compilation phases — for example, verifying the causality of a program, which ensures that the concurrent
components executed by the program can be statically sequentialized [BCE+03].

1.4.2 Worst-Case Execution Time

The synchronous hypothesis, on which Lustre and its derivatives are based, is only valid if the time
required to compute a program’s outputs is always shorter than the interval between the appearance
(or sampling) of its inputs. In the context of strict real-time systems, it is therefore essential, in order to
meet deadlines, to ensure that the time needed for the program to compute output values from arbitrary
input values never exceeds, in the worst case (i.e., when execution is slowest), a maximum time bound.
This Worst-Case Execution Time (WCET) must be strictly less than the shortest period separating two
consecutive inputs, or the minimum delay between two sporadic events of the same type, so that no
input is missed during program execution.

For a long time, the most common practice for estimating a program’s maximum execution time relied
on empirical measurements : the program was executed multiple times on the target hardware, and the
longest observed runtime was taken as a realistic upper bound for its execution time [WEE+08]. However,
this approach has clear limitations : since test coverage can never be exhaustive, it is likely that in real-
world execution a specific combination of input values could trigger a longer reaction time than the one
observed during testing. Safer techniques now exist to compute WCET by determining the maximum
number of machine cycles required for execution. These techniques generally rely on static analyses
that generate a control-flow graph representing the program’s execution. The graph is then analyzed to
identify all valid execution paths of the program and to estimate the cost of the longest valid path. Several
static analysis methods exist for this purpose, such as the Implicit Path Enumeration Technique (IPET)
[LM97]. IPET encodes program components as integer linear constraints, which are then used to compute
the WCET as a linear expression to be maximized. This maximization can be carried out using Integer
Linear Programming (ILP) solvers or constraint programming techniques. Several tools implement this
technique, such as OTAWA [BCRS10], developed at the Toulouse Institute of Computer Science Research
(IRIT), which estimates the WCET of programs on a wide range of architectures.

Other WCET estimation methods rely on analyzing the structure of a program’s source code : the
program’s syntax tree is traversed in order to group together, in the control-flow graph, multiple nodes
corresponding to syntactic constructs (loops, conditionals, etc.), and this process is repeated until the
overall cost of the program can be deduced. For example, the Heptane tool [CP01] performs such an
analysis and estimates the WCET of programs executed on ARM and MIPS architectures.

Figure 1.18 illustrates the difference between : (i) the worst-case time estimated by repeated mea-
surements (which may underestimate the true WCET), (ii) the bound provided by WCET estimation
tools such as Heptane or OTAWA (which may conversely overestimate the duration), and (iii) the actual
worst-case execution time.

The computation of a program’s WCET can be greatly complicated by the architecture of the processor
on which it runs. Modern processors typically include multiple cache levels and advanced optimizations
(pipelines, branch prediction, etc.), which make the execution time of an instruction variable and de-
pendent on the execution history of preceding instructions. As a result, on such architectures it is not
possible to calculate the WCET of a program by considering each instruction’s cost independently :
instead, an abstract model of the processor’s behavior must be used to estimate WCET.
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Figure 1.18 – Measured, guaranteed, and actual worst-case execution times
(image from [WEE+08])

However, the microcontrollers we target here do not implement these sophisticated mechanisms that
make WCET estimation so complex. For example, a microcontroller in the ATmega328 family has no
cache system, its processor does not implement branch prediction, and it is limited to a simple two-stage
scalar pipeline that merely fetches the next instruction while the current one is being executed. This
limitation significantly simplifies the computation of the worst-case execution time, since the execution
time of each instruction can be analyzed separately.

In particular, in Chapter 6 we will present a method for computing the WCET of a program running
on a microcontroller by analyzing the bytecode instructions of which it is composed.

The estimation of WCET for synchronous programs is usually carried out on the sequential program
generated by compilation. In the case of Lustre, this program takes the form of a single loop, without
recursion or dynamic allocation. The simplicity of the generated code thus makes it straightforward to
bound the execution time of a loop iteration using automated software solutions.

1.4.3 Formal Specifications and Metatheory

A formal specification defines, in an unambiguous language, the rules governing the behavior of a sys-
tem [Spi89]. In the context of programming languages, such rules describe, for example, the appropriate
type systems or the semantics of the language.

Deep specification tools [ABC+17], such as the proof assistants Coq [Tea19] and Isabelle/HOL [NPW02],
as well as formal methods such as the B-Method [Abr96] — widely used in critical industrial applications
(for instance, in the automation of Paris Metro lines 1 and 14) — enable the formal specification of sys-
tems in order to certify their correctness. From such formal specifications, the above tools can generate
executable code in a general-purpose programming language : for example, Coq allows the extraction of
functions to OCaml (among other languages), while Isabelle/HOL supports code generation to Haskell
and other high-level languages. Through successive refinement of the specification, it is possible to ob-
tain certified-correct executable programs. Prominent examples include the seL4 microkernel [KEH+09],
whose implementation correctness was proven using Isabelle/HOL; the CompCert certified compiler
[KLW14], verified in Coq, which supports C compilation for numerous processor architectures (ARM,
RISC-V, x86, etc.) ; the CakeML project [KMNO14], which features a formally specified and verified
compiler (using the HOL4 proof assistant [SN08]) for a functional programming language ; and JSCert
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[BCF+14], a Coq formalization of JavaScript, together with its interpreter JSRef, which has been proven
to conform to the formal specification.

The Lustre language was designed from the outset with a formally defined semantics, illustrating
the intent of its creators to target systems that require strong safety guarantees. Many research efforts
have focused on the formalization of Lustre and the development of certified compilers ensuring that
generated programs respect its semantics [BBD+17, BBP18, Aug13]. These works involve formalizing a
Lustre-like language and certifying, using Coq, a code generator compatible with CompCert, thereby
yielding a fully certified compilation chain from Lustre programs down to machine code.

Chapter Conclusion

The main purpose of this thesis is to bring together all the aspects presented in this chapter. Indeed,
because of the advantages offered by high-level languages, we aim to execute programs written in such
a language on microcontrollers with very limited hardware resources. The use of the OCaml language
appears to us to be a relevant approach, both for the richness of the language, the lightweight nature of
its model, and the safety it provides through its strict static typing, which ensures that no type-related
errors will occur during program execution.

Thus, in the following chapter we will describe a portable implementation of the OCaml virtual
machine, named OMicroB. This virtual machine is designed to run on a wide variety of microcontrollers,
in some cases with less than 4 kilobytes of RAM. Since applications for microcontrollers are inherently
concurrent due to their multiple interactions with their environment, we will then propose OCaLustre,
a synchronous extension of the OCaml language, compatible with the aforementioned virtual machine.
This extension will bridge the gap between the advantages of using a high-level general-purpose language
and a lightweight concurrency model suited to microcontroller resources.

Our solutions will benefit from the guarantees offered by both worlds, and static analyses may
furthermore be carried out directly on the bytecode of an OCaml program, thereby providing an increased
level of abstraction for developing applications that leverage the portability of this approach. In this
regard, we will describe an analysis for computing the worst-case execution time of a synchronous
instant in an OCaLustre program, ensuring that activations do not overlap and thereby validating the
synchronous hypothesis.

Moreover, while proving the correctness of a full compilation chain for a programming language lies
beyond the scope of this thesis, we will nevertheless address many formal aspects in the description of
OCaLustre, for which we will establish a formal specification. Certain metatheoretical properties will
also be proven using the Coq proof assistant.
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2 OMicroB : A Generic OCaml Virtual
Machine

The work initiated by the OCaPIC virtual machine appears to constitute a promising and well-
suited solution for programming microcontrollers with limited resources. Indeed, the use of the OCaml
language provides microcontroller programming techniques with a modern development language,
which supports multiple paradigms such as functional programming, object-oriented programming, and,
of course, the more traditional imperative programming model. Safer than the conventional assembler/C
pair, this high-level language enables the early detection of certain errors in programs through its static
type system. Furthermore, OCaml offers tools that simplify and guarantee program development, for
instance through its automatic memory management system (garbage collection) or its type inference
mechanism, which allows developers to avoid writing a large number of superfluous type annotations
while still preserving the guarantees of static typing.

Nevertheless, OCaPIC is not well-suited to the variety of microcontroller models available on the
market. The decision to implement this tool largely in the assembly language of PIC18 microcontrollers
yields significant performance (in terms of execution speed), but greatly limits the portability of this
virtual machine, since it can only be executed by hardware from that family. Given the diversity of
microcontroller families and architectures used by both industry and hobbyists (AVR, PIC16, PIC32,
ARM, . . . ), we consider that a generic and portable solution, capable of running on a wide range of targets,
would represent a major advantage for the adoption of high-level programming methods in the field of
microcontroller development.

We therefore propose OMicroB, a generic virtual machine designed to execute OCaml programs on
diverse and resource-constrained hardware. This virtual machine, developed in collaboration with Benoît
Vaugon (the designer of OCaPIC), takes advantage of the ubiquity of the C programming language in
traditional microcontroller development, which ensures the almost systematic availability of C compilers
for every target platform. Accordingly, a large part of the OMicroB virtual machine is written in C, which
we use as a form of portable assembly language, allowing simplified porting of OMicroB to otherwise
heterogeneous devices.

Given the stringent constraints on the memory sizes of the devices considered, we have sought
to provide a finely controlled implementation that remains executable on hardware with very limited
resources. Particular effort has therefore been devoted to reducing the memory footprint of programs
through a variety of optimizations.

This chapter first recalls the main syntactic and semantic aspects of the OCaml programming language,
before describing in detail the implementation of the standard OCaml virtual machine, and finally
presenting our implementation of a virtual machine designed to run on diverse devices with limited
resources.
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2.1 The OCaml Language

This section is intended to familiarize readers who are not accustomed to OCaml with the syntax and
essential features of the language. We present here the main aspects of the language that will be used in
the examples throughout this dissertation. Readers already familiar with OCaml may skip directly to the
next section. What follows is a non-exhaustive overview of the main high-level programming constructs
that allow developers to build expressive applications that are both rich and safer, thanks to OCaml’s
static type system and its automatic memory management mechanism.

Functional values : The core of the OCaml language is both functional and imperative. It allows
functions defined in the language to be manipulated as values. For example, the function compose
computes the application of the composition ( f ◦ g) to a variable x :

let compose f g x = f (g x)

This notation is an alternative to a more explicit form, which defines a function using the keyword
fun. The definition of the function compose can therefore also be written as follows :

let compose = (fun f g x -> f (g x))

The same function can also be expressed in a curried form. Currying consists in transforming a function
of n arguments into a function that takes a single argument and returns a chain of n − 1 functions, each
of which also takes a single argument, until finally returning the value computed by the body of the
original function [Rey98]. Thus, the following definition of the function compose is semantically identical
to the two previous definitions :

let compose = (fun f -> (fun g -> fun x -> f (g x)))

OCaml also supports the use of lambda-expressions, i.e. anonymous functions that can be employed
inside the body of other functions. For example, using the function compose, the following function
applies an anonymous function (defined with the same keyword fun) that doubles its parameter x, and
then prints the result (via the primitive print_int) :

let double_print x = compose print_int (fun x -> x * 2)

It should be noted that functional values manipulated in programs, also known as closures, may
capture and retain their own environment. For instance, the function return_closure below computes,
from a given x, a closure that stores the value of x in its environment and awaits a parameter y in order
to compute the result x + y.

let return_closure x = (fun y -> x + y)
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The type of this function is a function type of the form type of the parameter→ type of the result. Since
return_closure takes an integer as input and returns a function that itself takes another integer and
produces an integer (because the operator + applies only to integers and produces an integer 1), its type
is :

int→ (int→ int)

The function types in OCaml are right-associative, which allows the more concise notation :

int→ int→ int

Tuples : A function can manipulate tuples of values. For example, the function sum_triple computes
the sum of the three elements contained in the triple passed as a parameter :

let sum_triple (x,y,z) = x + y + z

The function sum_diff, on the other hand, returns a pair corresponding to the sum and the difference
of the values passed as parameters :

let sum_diff x y = (x + y, x - y)

Static typing, polymorphism, and type inference at compilation : In OCaml, the definition of variables
and functions does not generally require the developer to annotate each definition with its type. The types
of values are inferred by the compiler, which then statically checks that the implemented programs are
consistent with the types deduced during a type-checking phase at compilation.

For example, the type of the function sum_triple, inferred by the compiler, is (int ∗ int ∗ int) → int 2

because the three elements of the input triple are added together with the integer addition operator
« + ». Similarly, the compiler infers for the function sum_diff the type int → int → (int ∗ int). Any use
of these functions with values incompatible with their inferred types (for instance, passing a triple of
floating-point values to sum_triple, or attempting to use the result of sum_diff as if it were a plain
integer) will be detected and rejected at compile time.

The strict static typing of the language thus increases program safety by ensuring that no error due to
inconsistent typing of values can occur during execution. Type inference also spares the developer from
having to annotate values with their most general type. The notion of a most general type stems from the
fact that OCaml implements a type system with parametric polymorphism, which allows functions to
be defined generically so that they can apply to arguments of various types. For instance, the following
identity function simply returns its argument x :

let identity x = x

The type of this function, as inferred by OCaml, is α → α (also written ’a -> ’a), meaning that the
function receives an argument of an arbitrary type (α) and returns an argument of the same type.

1. It is the operator « +. » that adds two floating-point numbers.
2. The symbol ∗ in the type of a tuple separates the types of its individual elements.
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In the same way, the compiler infers for the compose function, introduced at the beginning of this
section, the following type :

(α→ β)→ (γ→ α)→ γ→ β

Algebraic data types and pattern matching : An OCaml program can define new data types in the form
of algebraic data types (which generalize enumerated types). Defining such a type consists of assigning it
a name along with several constructors.

For example, the enumerated type suit can represent the suit of a playing card :

type suit = Spade | Heart | Diamond | Club

It is also possible to define parameterized constructors, which are particularly useful to represent
recursive types. For example, the type suit_list represents a list of card suits, either the empty list
(Nil), or a list constructed (with the constructor Cons) from one suit (the head of the list) and another list
of suits (its tail) :

type suit_list = Nil | Cons of suit * suit_list

(* the list [Heart; Club; Club] : *)

let example_list = Cons(Heart, Cons(Club, Cons(Club, Nil)))

To manipulate the values of an algebraic type, one typically uses pattern matching over its constructors,
with the match ... with construct. For example, the recursive function length computes the length of
a list of suits :

let rec length l =

match l with

| Nil -> 0

| Cons (_, l’) -> 1 + length l’

let l = Cons(Heart, Cons(Club, Cons(Club, Nil))) in

print_int (length l) (* prints "3" *)

Note that in a pattern, the character _denotes « any value ». For example, in the pattern Cons (_, l’),
used in the match of the function length, the first element of the list is ignored since its value is irrelevant
to the computation, and does not need to be named.

A type can also be defined by exploiting the mechanism of parametric polymorphism. For example,
the type that represents a list whose elements are of any type can be defined as follows :
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type ’a list = Nil | Cons of ’a * ’a list

(* the list [Heart; Diamond; Diamond] of type "suit list" *)

let suit_list_example = Cons(Heart, Cons(Diamond, Cons(Diamond, Nil)))

(* the list [1; 2; 3; 4] of type "int list" *)

let int_list_example = Cons(1, Cons(2, Cons(3, Cons(4, Nil))))

(* the list [2.33; 4.55; 6.77] of type "float list" *)

let float_list_example = Cons(2.33, Cons(4.55, Cons(6.77, Nil)))

With such a definition it becomes possible, among other things, to create lists of integers, floats,
values of a sum type, functions (all of the same type), or even lists of lists. However, lists must remain
homogeneous : the type ’a list defines the structure of a list containing values of a certain type, but all
the elements of the same list must share the same type.

Furthermore, this polymorphic list type ’a list is predefined by OCaml’s standard library. The
constructor Nil is written [] and the constructor Cons corresponds to the infix operator ::. Thus, the list
Cons(1, Cons(2, Cons(3, Nil))) can be written 1::2::3::[], or even more simply [1;2;3] thanks
to syntactic sugar provided by the compiler.

Record types : Values composed of several distinct elements can be represented using record types (or
product types). A record type is defined by giving the name and type of each element contained in the
value.

The following example defines a record type to represent a point in a plane (with two coordinates : x
and y), as well as a function that computes the distance between two points p1 and p2 :

type point = { x : float ; y : float }

let distance p1 p2 =

let x_diff = p1.x -. p2.x in

let y_diff = p1.y -. p2.y in

sqrt (x_diff *. x_diff +. y_diff *. y_diff)

Mutability and imperative programming : The contents of the fields of a record type can be declared
as mutable during program execution using the keyword mutable. The value of a mutable field can be
modified with the operator <-.

For example, the code below declares a point whose fields are mutable, and a function that translates
a point p by a vector with coordinates (u, v). This translation modifies in place the values contained in
the fields x and y of p (the infix operator ; denotes a sequence of actions) :
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type point = { mutable x : float ; mutable y : float }

let translate p (u,v) =

p.x <- p.x +. u;

p.y <- p.y +. v

In general, as in many functional languages (like Haskell or Scheme), variables in OCaml are immu-
table : once declared, their value cannot be modified during execution.

However, a special data type called a reference allows variables whose value can change during
execution, making imperative programming possible. A reference is defined with the keyword ref, its
contents accessed with the operator !, and updated with the operator :=.

The following program defines a counter count, used to run a loop 10 times. In each iteration, the
value of count is printed, then incremented :

let loop =

let count = ref 0 in

while (!count < 10) do

print_int !count;

count := !count + 1

done

In fact, the type of a reference corresponds to a record with a single field named content, declared as
mutable :

type ’a ref = { mutable content : ’a }

Other basic data structures in OCaml are also mutable, such as arrays 3.
For example, the following program uses a « for » loop (as in many programming languages) to add

2 to each element of the array t (defined with the syntax [| ... |]). Each element i of array t is accessed
with the notation t.(i) :

let t = [| 1 ; 2 ; 3 ; 4 ; 5 |] in

for i = 0 to 4 do

t.(i) <- t.(i) + 2

done

Exceptions : As in many programming languages, OCaml provides an exception mechanism, allowing
the control flow of a program to change when an error occurs.

For example, the program below defines an exception Division_by_zero, which is raised in the
function divide if its second parameter is equal to 0.0. This exception is then caught using the construct
try _ with in the calling function call_divide, which returns instead the predefined value max_float :

3. Historically, strings were mutable too, but this behavior is now deprecated. Byte sequences can be used instead, via the
Bytes module.
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exception Division_by_zero

let divide x y =

if y = 0.0 then raise Division_by_zero;

x /. y

let call_divide x y =

try divide x y

with Division_by_zero -> max_float

Modules : OCaml is a modular language, which makes it possible to group together a set of type and
value declarations (variables, functions) inside distinct modules. For example, the following Card module
defines a set of types and functions for manipulating playing cards.

module Card = struct

type suit = Spade | Heart | Diamond | Club

type rank = Number of int | Jack | Queen | King | Ace

(* A card = a rank and a suit: *)

type card = { r : rank ; s : suit }

(* Card values for the game of Belote: *)

let score card trump =

match card.r with

| Number 10 -> 10

| Number 9 -> if card.s = trump then 14 else 0

| Number _ -> 0

| Jack -> if card.s = trump then 20 else 2

| Queen -> 3

| King -> 4

| Ace -> 11

(* Display function: *)

let print_card card =

let suit_string =

match card.s with

| Heart -> "Heart"

| Spade -> "Spade"

| Club -> "Club"

| Diamond -> "Diamond"

in

let rank_string =

match card.r with

| Number i -> string_of_int i
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| Jack -> "Jack"

| Queen -> "Queen"

| King -> "King"

| Ace -> "Ace"

in

print_string (rank_string ^ "␣of␣" ^ suit_string)

end

Any file foo.ml implicitly corresponds to the declaration of a module Foo, whose interface can be
defined in the file foo.mli. This modular programming model makes it possible to perform the separate
compilation of the distinct components of a program.

Objects : Finally, OCaml is also an object-oriented programming language. The object type system
implemented in the language supports multiple inheritance as well as class polymorphism. For example,
the following OCaml code (taken from the official OCaml website [⚓29]) defines a class representing a
polymorphic stack structure.

class [’a] stack =

object (self)

val mutable list = ( [] : ’a list ) (* variable d’instance *)

method push x =

list <- x :: list

method pop =

let result = List.hd list in

list <- List.tl list;

result

method peek =

List.hd list

method size =

List.length list

end

Due to the use of parametric polymorphism (denoted by the parameter ’a of the class), the way
an instance of this class is used determines the type of the values stored in the stack it represents. For
example, the following program manipulates a stack of playing cards :

open Card

let () =

let s = new stack in

s#push {v = Jack ; c = Spade}; (* s is therefore a ’’card stack’’ *)

s#push {v = Queen ; c = Heart};

let c = s#pop in

print_card c; (* prints ’’Queen of Heart’’ *)

print_int s#size (* prints 1 *)
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Automatic memory management : As in the Java language, OCaml implements a garbage collector.
This mechanism automatically frees the memory associated with values that are no longer used by the
program at runtime. Thus, using the OCaml language spares the developer from concerns related to
the dynamic deallocation of the various values being manipulated. Moreover, this automation makes
programs less prone to bugs caused by programmer errors in handling program memory, which are often
quite difficult to detect.

Advanced constructions : Finally, OCaml implements several other high-level programming features,
such as GADTs (Generalized Algebraic Data Types), polymorphic variants, or parameterized modules (also called
functors). These advanced constructions are fully compatible with the generic virtual machine that we
describe in this chapter. We will present some examples making use of such constructions in the course of
our discussion (for instance, in Section 2.3.3 we will present an example using GADTs to enhance the type
safety of primitives that implement communication between a microcontroller and its environment).

2.2 The ZAM : Reference OCaml Virtual Machine

OMicroB is a virtual machine derived from the standard OCaml virtual machine. As such, it shares
many common features with the latter. In this section, we present the main technical aspects of the
reference OCaml virtual machine, from the format of the bytecode it can interpret, to a brief description
of its runtime library, including the details of how OCaml values are represented internally.

2.2.1 Overview of the ZAM

Developed since 1996 at Inria within several research projects (Cristal, then Gallium), this virtual
machine is a stack-based machine, with a functional and imperative core, which can be seen as a version
of the Krivine abstract machine [Kri07] implementing a strict application model rather than call-by-name.
Also known as the ZAM (Zinc Abstract Machine) in reference to the ZINC project [Ler90] from which it
originated 4, the reference OCaml virtual machine constitutes one of the two compilation targets of the
OCaml language. Indeed, an OCaml program can be compiled either into a bytecode file (via the ocamlc
compiler), interpretable by the ZAM (more precisely by its reference implementation, named ocamlrun),
or into a native executable via the ocamlopt compiler. In this thesis, we focus on the virtual machine
approach to OCaml compilation, due to the portability opportunities it offers, as well as the relative
simplicity and lightweight nature of this compilation model for the OCaml language.

2.2.2 OCaml Bytecode

In version 4.06, the standard OCaml virtual machine contains a set of 148 different bytecode ins-
tructions, into which any OCaml program can be compiled. These bytecode instructions correspond to
operations that act on the control flow of programs (such as the conditional branching instruction BRAN-
CHIF), instructions that perform arithmetic or boolean computations (such as the MULINT instruction,
which multiplies integer values), instructions for dynamic memory allocation (such as the CLOSURE
instruction, which stores a functional value in the form of a closure in the virtual machine’s heap), or

4. This project aimed at a lightweight implementation of the ML language.
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instructions that manipulate the virtual machine’s stack (such as the PUSH and POP instructions, which
push and pop values).

Most bytecode instructions are in fact shortcuts corresponding to combinations of several atomic
instructions (for example, the instruction PUSHACC1 has the same behavior as the instruction PUSH
followed by the instruction ACC1, which retrieves the second element on the stack).

For the sake of brevity, the complete set of OCaml bytecode instructions and their descriptions are
not reproduced in this thesis ; however, the main instructions will be presented 5.

The generation of OCaml bytecode from an OCaml source file is performed by the ocamlc compiler. The
file produced by ocamlc is an executable program that contains several distinct sections, each necessary
for the initialization and interpretation of the OCaml program by the virtual machine :

— A CODE section containing the bytecode instructions corresponding to the compiled program
code.

— A DATA section containing a serialized representation of the program’s global variables (constants,
exceptions, etc.).

— A PRIM section, which is a table mapping the external primitives used by a program to the integers
that serve as references to them in the bytecode.

— An optional DLLS section containing the names of external libraries required for program execu-
tion (for example, the Unix library, which provides access to system calls).

— An optional DLPT section containing the paths of the libraries used by the program.
— An optional DBUG section, used for program debugging.

For example, Figure 2.1 shows the OCaml definition of a function facto, which computes the factorial
of an integer, together with its application to the value 4. A representation of the bytecode contained in the
file generated by ocamlc is reproduced alongside it. This bytecode is only a fragment of the CODE section
of the file, which, in addition to the instructions corresponding to the facto function, also includes a large
number of bytecode instructions required for program initialization. Moreover, the generated bytecode
also contains the code of functions from a module imported by default into every OCaml program, named
Pervasives, which provides the definitions of standard functions (for instance, printing functions) and
basic operators (such as integer addition or logical “or”).

2.2.3 Structure of the Virtual Machine

The OCaml virtual machine manipulates, during the interpretation of a program, several registers
required for its execution. These registers are as follows :

— An accumulator (acc), used to store a value in order to avoid excessive pushes and pops on the
virtual machine stack.

— A pointer (pc) to the next bytecode instruction to be interpreted.
— A pointer (sp) to the topmost cell of the stack.
— A pointer (trapSp) to the current exception handler.
— A counter (extra_args) representing the number of arguments still to be applied to a function.
— A pointer to the environment (env) of the current closure.
— A pointer to the table of global variables (global_data) of the program.

5. Readers interested in the semantics of each bytecode instruction may refer to the documentation of the Cadmium project
[⚓6].
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let rec facto x =
match x with
| 0 -> 1
| _ -> x * facto (x-1)

in
facto 4

(...)
1673 BRANCH 1685

1674 ACC 0
1675 BRANCHIFNOT 1683
1676 ACC 0
1677 OFFSETINT -1
1678 PUSHOFFSETCLOSURE 0
1679 APPLY 1
1680 PUSHACC 1
1681 MULINT
1682 RETURN 1
1683 CONST 1
1684 RETURN 1

1685 CLOSUREREC 1 0 1674 []
1686 CONST 4
1687 PUSHACC 1
1688 APPLY 1
1689 POP 1

Figure 2.1 – Definition and application of the factorial function, and corresponding bytecode

The contents of these registers are updated during program execution according to the semantics of
each bytecode instruction contained in the file generated by ocamlc. The OCaml bytecode interpreter of
the virtual machine is implemented in the C programming language.

Figure 2.2 illustrates the effect of each instruction of the bytecode program presented in Figure 2.1 on
the state of the virtual machine registers.
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Position Instruction Description

1673 BRANCH 1685 Jump to instruction 1685 (pc = 1685)
1674 ACC 0 Load the top of the stack into the accumulator (acc = sp[0])
1675 BRANCHIFNOT 1683 If acc = 0, then jump to instruction 1683 (pc = 1683)
1676 ACC 0 Load the top of the stack into the accumulator (acc = sp[0])
1677 OFFSETINT -1 Decrement acc
1678 PUSHOFFSETCLOSURE 0 Push acc, and load into acc the closure stored in env
1679 APPLY 1 Push the current context (extra_args, pc, env),

put acc into env, and jump to the code of the closure in acc (i.e. facto)
1680 PUSHACC 1 Push acc, and load sp[1] into acc
1681 MULINT Multiply acc and sp[0], store the result in acc, and pop sp[0]
1682 RETURN 1 Pop one element and return from the function (pc = pop(), env = pop(),

extra_args = pop())
1683 CONST 1 Load constant 1 into acc
1684 RETURN 1 Return from the function (pc = pop(), env = pop(), extra_args = pop())
1685 CLOSUREREC 1 0 1674 [] Create the closure whose code starts at address 1674 (i.e. facto)

in the accumulator, and push it onto the stack
1686 CONST 4 Load the constant 4 into acc
1687 PUSHACC 1 Push acc, and load sp[1] into acc
1688 APPLY 1 Push the current context (extra_args, pc, env), put the value of

acc into env, and jump to the code of the closure in acc (i.e. facto)
1689 POP 1 Pop one value (sp--)

Figure 2.2 – Interpretation of the bytecode for the factorial program of Figure 2.1

2.2.4 Representation of Values

Due to the parametric polymorphism of the OCaml language, all values manipulated by the ZAM
are based on a uniform representation : OCaml values all have the same length, defined by the compiler
depending on the architecture of the machine on which the program is executed (typically 32 or 64
bits). Nevertheless, OCaml’s garbage collector in particular needs, at runtime, to distinguish between
immediate values, which it should ignore, and dynamically allocated values on the heap of the virtual
machine, which it must visit and process.

This dichotomy in the ZAM is very simple : immediate values correspond to all values encoded as
integers (such as the constructors of enumerated types, or of course integers themselves), whereas any
other value is boxed on the heap. The distinction between these two categories is achieved by reserving
the least significant bit of each value to indicate its nature : if the least significant bit of an OCaml value
is 1, then it is an integer. If it is 0, then the value corresponds to a pointer, since all addresses are even :
in a 32-bit representation (resp. 64-bit), all OCaml values have a size of 4 bytes (resp. 8 bytes), meaning
that all pointer addresses are multiples of 4 (resp. 8).

This representation allows the components of the virtual machine to quickly distinguish immediate
values from allocated values.

Figure 2.3 illustrates the binary representation of OCaml values in the ZAM, on a machine with a
32-bit architecture.
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0131

integer value 1

Immediate value
0131

0

heap address

Allocated value (pointer)

Figure 2.3 – Representation of OCaml values in the ZAM on 32-bit architectures

Integer values can then range from −230 to 230 − 1, while 232 bits are available to represent pointers
to the heap. The representation is equivalent on a 64-bit version of the ZAM, in which integers are
represented by 63 bits while pointers also end with zero 6.

Header of allocated blocks : OCaml values allocated on the heap—such as closures, floating-point
numbers, tuples, records, or values of recursive types (lists, trees, etc.)—are encapsulated in blocks
whose first word corresponds to a header. This header contains several pieces of information for the
virtual machine interpreter as well as for the garbage collector. In a 32-bit configuration, the header is
made up of 22 bits representing the size of the allocated block (excluding the header), 2 color bits required
for the proper functioning of the garbage collector, and 8 tag bits that indicate the nature of the value
(closure, exception, object, etc.). In particular, this tag allows the garbage collector to determine whether
or not it should traverse the values contained inside the block :

07891031

size

co
lo

r

tag

Figure 2.4 – Header of an allocated block

The structure of the contents of a block depends on the nature of the value it represents : for example,
in the case of a closure (with tag 247), the first value is a pointer to a bytecode segment corresponding to
the closure’s code, and the subsequent values represent the closure’s environment.

6. More precisely, such pointers end with 000 since all addresses are multiples of 8, just as 32-bit addresses end with 00
because they are multiples of 4.
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07891031

size

co
lo

r

247

code pointer

environment

Figure 2.5 – Representation of a closure

For example, the closure generated by theCLOSUREREC instruction in the factorial example of Figure 2.1,
which corresponds to the facto function, is reduced to a block containing a code pointer to the address
0x8073088, and an empty environment :

07891031

1 247

0x8073088

Every data structure is allocated in a block that contains each element of that structure. For example, an
element of a list is represented by the value of the element followed by a pointer to the next element
(not necessarily contiguous) of the list. It should be noted that a pointer to a block actually points to the
first value contained in this block, and not to its header. The list [23;42;88] is therefore represented as
follows :

07891031

2 0 0xA0

23 1 0xA4

0xC8 0xA8
...

2 0 0xC4

42 1 0xC8

0xF4 0xCC
...

2 0 0xF0

88 1 0xF4

0 7 1 0xF8

Fixed-size data structures, such as arrays or tuples, are represented by blocks containing values stored
contiguously in memory. For example, the triple (1,2,3) is represented by the following block :

7. The value 0 here represents the constant constructor [] for the empty list.
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07891031

3 0

1 1

2 1

3 1

This representation is also identical for the array [| 1 ; 2 ; 3 |] or for a record containing three
fields with values 1, 2, and 3. Some type-related information is therefore impossible to recover once a
program has been compiled to bytecode (which itself is untyped), and likewise during its execution. Static
typing, however, ensures that, for example, an array cannot be mistakenly used as a tuple at runtime.

2.2.5 Runtime library

The ZAM provides a rich standard library, which supports the manipulation of many predefined
types, such as lists, mutable arrays, references, and strings. Most modules of this library are defined
directly in the OCaml language, with the exception of certain functions that cannot be expressed in
OCaml itself and are therefore written in C. An example is the generic function compare, which compares
two OCaml values of arbitrary type, whether a base type (int, float, etc.) or even a recursive structure,
predefined or not (list, tree, etc.).

In addition, memory regions holding values that are no longer used during execution are eventually
reclaimed by a garbage collector (GC). The ZAM implements a hybrid incremental and generational GC
that relies on two heaps : a fixed-size minor heap, into which value blocks are initially allocated, and a major
heap, which contains blocks that have “survived” (i.e., are still reachable by the program) after a minor
heap collection. The minor heap collection uses a Stop and Copy algorithm, which copies all live values
from the minor heap into the major heap, whereas the major heap collection is based on an incremental
Mark and Sweep method that traverses the heap in segments, marking all live blocks before reclaiming
the others. OCaml’s GC also includes a regularly invoked Mark and Compact phase, which compacts the
major heap to prevent fragmentation.

2.3 Compilation and Execution of an OCaml Program with OMicroB

In this section, we present the operation of the OMicroB virtual machine in light of a detailed descrip-
tion of the different stages required to execute a program on a microcontroller. This description highlights
the essential differences between the ZAM and this generic virtual machine, which is specifically designed
for programming devices with limited resources.

We therefore describe below the successive transformations applied by OMicroB to an OCaml source
program in order to produce an executable that can be stored in a microcontroller’s memory. Figure 2.6
provides a schematic representation of this compilation chain : the OCaml source file is first compiled
into a bytecode file (a), cleaned (b), then embedded into a C file (c), which is finally compiled together
with its interpreter and runtime library (d) into an executable file for the target hardware (e).
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Figure 2.6 – Compilation of an OCaml source file into a microcontroller executable

2.3.1 Representation of an OCaml Program in a C File

The initial steps in producing a microcontroller-executable program from an OCaml source file involve
compiling the source into an intermediate representation — OCaml bytecode — which can be interpreted
by the virtual machine. In OMicroB, this bytecode is generated, cleaned, and then embedded into a C
file containing a representation of the instructions, as well as the declaration of C arrays representing,
among other things, the virtual machine’s stack and heap.

Generation and Cleaning of Program Bytecode

OCaml programs intended for the OMicroB virtual machine are written using the standard syntax
of the language and are therefore fully compatible with the standard OCaml bytecode compiler, ocamlc.
Such a program is first compiled into a standard bytecode file using this compiler. Leveraging the standard
compiler enables the reuse of standard tools from the OCaml ecosystem, such as ocamldebug, which can
be used to debug OCaml programs by analyzing their bytecode.

The bytecode file generated by ocamlc may contain code that is unused by the final program, in
particular the initialization code of closures not referenced in the program, induced by the opening
of OCaml libraries in the program’s source code. For example, a program making use of the List
module in its source code will result in the generated bytecode including the initialization of all the
closures defined in that module. Consequently, the memory footprint of a program may be significantly
increased by such initializations, and programs that are a priori lightweight may become incompatible
with the strict memory constraints inherent to microcontroller usage. In order to reduce the memory
consumption of OCaml programs, we make use of the ocamlclean[⚓9] tool, originating from the OCaPIC
project that preceded our work. This tool is capable of detecting unused blocks in a program through
static bytecode analysis, and of removing the initialization code of the unused closures associated with
them 8. The program resulting from this cleaning step is therefore smaller, which makes it suitable for
resource-constrained environments.

The memory savings provided by the use of ocamlclean can vary greatly from one OCaml program to
another, depending on the number of external modules a program depends on, and on its structure. As

8. Note that ocamlclean “breaks” dynamic loading of programs since code not used by the main program is deleted. However,
this limitation is not problematic in our context of microcontroller programming, as we do not make use of dynamic loading.
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an example, consider the OCaml program at the top of Figure 2.7. After compiling this program into a
bytecode file using the ocamlc bytecode compiler (for version 4.06.0 of the OCaml language), the use of
the -verbose option of ocamlclean produces the output shown beneath the program source code in Figure
2.7. The result is that cleaning this program, which only uses the map and iter functions from the List
module, reduces the file size by a factor of 14.8 (from 32.34 kilobytes down to 2.18 kilobytes).

It should also be noted that since the Pervasives module (which defines certain basic operations
and primitives) is implicitly loaded by every program, even a program that appears almost empty
contains a significant number of unused bytecode instructions. The ocamlclean tool therefore almost
always provides a reduction in program size, even for programs that are a priori very lightweight. For
example, on a personal computer, the OCaml program reduced to the single value «()» (unit) is compiled
by ocamlc into bytecode containing 2279 instructions, and the use of ocamlclean reduces this number to
just 81 instructions in total, dividing the program size by 12 (from 18.5 KB down to 1.53 KB).

let () =
let l = List.map (fun x -> x + 1) [1;2;3;4;5] in
List.iter print_int l

Statistics:
* Instruction number: 5454 -> 188 (/29.01)
* CODE segment length: 23844 -> 964 (/24.73)
* Global data number: 66 -> 25 (/2.64)
* DATA segment length: 769 -> 376 (/2.05)
* Primitive number: 352 -> 9 (/39.11)
* PRIM segment length: 7065 -> 191 (/36.99)
* File length: 32340 -> 2177 (/14.86)

Figure 2.7 – Dead code elimination statistics of a program with ocamlclean

Generation of a C file

The next stage in the OMicroB compilation chain consists of transforming the OCaml bytecode file
generated by ocamlc into a C file. This file, produced by a tool called bc2c, contains a representation of
the OCaml program’s bytecode as well as the different memory areas required for its execution. Other
structures defined in the generated file represent certain data sets used by the OCaml program, such as
the table of the program’s global variables or a table of C primitives used by the OCaml program, mainly
to carry out low-level interactions with its environment.

Global structure of the C program : The C file generated by bc2c defines several program-specific
elements that are manipulated by the virtual machine interpreter during execution. These elements
correspond to the different sections (CODE, PRIM, DATA) of the original bytecode file, as well as
the memory used by the OCaml program, represented as C arrays. Figure 2.8 provides a schematic
representation of the functioning of bc2c. The various elements present in the generated C file are as
follows :

— The OCaml program’s bytecode, represented as an array of constants.
— The heap of the virtual machine, which contains dynamically allocated values, represented as an

array of OCaml values.
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— The stack of the virtual machine, also represented as an array of values.
— The table of global variables used in the program.
— The set of primitive functions used by the program. This is represented as an array of pointers to

C functions taken either from the standard library or from user-defined external functions.
— The sizes of the generated arrays, together with a set of constant values corresponding to the

bytecode instruction numbers, represented as macros at the beginning of the file. In particular, the
size of the heap and the size of the stack are chosen by the developer at compile time.

Macros defining the file constants
(heap and stack sizes,

instruction numbers, etc.)

C array representing the stack
(ocaml_stack)

C array representing the heap
(ocaml_heap)

C array of global variables
(ocaml_global_data)

C array containing the program bytecode
(ocaml_bytecode)

C array of pointers to the primitives used
(ocaml_primitives)

bc2c

DATA

CODE

PRIM

...

program.byte (bytecode file)

program.c (C file)

Figure 2.8 – bc2c : embedding OCaml bytecode in a C file

Bytecode representation : The standard bytecode generated by the OCaml compiler contains only
148 distinct instructions. The arguments of the various bytecode instructions are also statistically rather
small (for example, the argument p of the conditional branch instruction BRANCHIF p, which represents
a relative position in the bytecode, often corresponds to a location situated nearby in the program’s
bytecode). Aligning bytecode instructions on 32-bit values, as in the standard OCaml virtual machine,
would in our use case result in fairly excessive and largely unnecessary resource consumption : memory
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would be wasted representing empty values consisting primarily of zeros, included solely to achieve
4-byte alignment. Reading bytecode instructions would also be slower, given that the microcontrollers
we target generally feature 8-bit processor architectures, which require multiple cycles to read and
manipulate larger values.

The tool bc2c therefore represents OCaml bytecode as a constant byte array, in which each element
corresponds either to an instruction code (or opcode) or to an instruction argument. Any argument that
does not fit within 8 bits is represented across several consecutive cells of the generated array. This
representation of bytecode using 8-bit values improves program execution speed and, more importantly,
reduces program size : based on measurements performed on a collection of standard programs, we
estimate that bytecode represented as a byte array is approximately 3.5 times smaller than the original
bytecode.

To enable the interpreter to distinguish between instructions whose arguments fit into a single byte
and those requiring multiple consecutive bytes, specialized versions of the relevant bytecode instructions
are generated. For example, the instruction PUSHCONSTINT k, which pushes the value of the accumulator
onto the stack and adds to it the constant integer k, is specialized in OMicroB into three versions capable
of handling integers represented on one, two, or four bytes. This specialization of instructions is indicated
by appending the annotations _1B, _2B, and _4B to the conventional names of bytecode instructions (for
example : PUSHCONSTINT_1B, PUSHCONSTINT_2B, and PUSHCONSTINT_4B).

Figure 2.9 shows the file generated by bc2c from the file obtained after compiling the program that
computes the factorial of 4, presented in Figure 2.1. To save the microcontroller’s RAM, the PROGMEM
annotation instructs the C compiler 9 to allocate the array representing the bytecode in flash memory,
since it is only read during program execution and never modified. The type opcode_t is an alias for
int8_t. The macro OCAML_BYTECODE_BSIZE is computed by bc2c and represents the total size (in bytes)
of the program’s bytecode. It should be noted that the addresses of the various bytecode instructions are
updated to take into account the offsets introduced by aligning the bytecode to 8-bit boundaries.

2.3.2 Bytecode Interpreter

At runtime, the interpreter of the OMicroB virtual machine traverses the code stored in the array
representing the program’s bytecode, and manipulates the data stored in the arrays that represent the
stack and the heap. This interpreter, whose semantics are identical to those of the ZAM, is responsible
for reading the program’s bytecode instructions and modifying the program’s memory accordingly. The
OMicroB interpreter contains the same seven registers as the ZAM (acc, pc, trapSp, extra_args, env, and
globaldata), with the notable difference that the pc register points to the microcontroller’s flash memory,
since the program bytecode is stored there in order to reduce RAM consumption. The dynamic elements
(stack, heap, and register values) are stored in RAM. Figure 2.10 provides a graphical representation of
the interaction between the various components of the OMicroB virtual machine.

Each of the 148 different OCaml bytecode instructions (along with their specialized versions) is
handled by the OMicroB interpreter, written in C, which manipulates the various registers and the
program’s memory. As with the ZAM, the interpreter executes the OCaml program by progressively
updating the contents of the virtual machine’s registers according to the instructions encountered during

9. This annotation is used by the avr-gcc compiler.
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#define OCAML_STACK_WOSIZE 42
#define OCAML_HEAP_WOSIZE 200
/* (...) */
#define OCAML_BYTECODE_BSIZE 28
#define OCAML_PRIMITIVE_NUMBER 0

value ocaml_stack[OCAML_STACK_WOSIZE];
value ocaml_heap[OCAML_HEAP_WOSIZE];

value ocaml_global_data[OCAML_RAM_GLOBDATA_NUMBER] = { /* ... */ };

PROGMEM opcode_t const ocaml_bytecode[OCAML_BYTECODE_BSIZE] = {
/* 0 */ OCAML_BRANCH_1B , 17,
/* 2 */ OCAML_ACC0 ,
/* 3 */ OCAML_BRANCHIFNOT_1B , 11,
/* 5 */ OCAML_ACC0 ,
/* 6 */ OCAML_OFFSETINT_1B , (opcode_t) -1,
/* 8 */ OCAML_PUSHOFFSETCLOSURE0 ,
/* 9 */ OCAML_APPLY1 ,
/* 10 */ OCAML_PUSHACC1 ,
/* 11 */ OCAML_MULINT ,
/* 12 */ OCAML_RETURN , 1,
/* 14 */ OCAML_CONST1 ,
/* 15 */ OCAML_RETURN , 1,
/* 17 */ OCAML_CLOSUREREC_1B , 1, 0, (opcode_t) -15,
/* 21 */ OCAML_CONSTINT_1B , 4,
/* 23 */ OCAML_PUSHACC1 ,
/* 24 */ OCAML_APPLY1 ,
/* 25 */ OCAML_POP , 1,
/* 27 */ OCAML_STOP

};

PROGMEM void * const ocaml_primitives[OCAML_PRIMITIVE_NUMBER] = {};

Figure 2.9 – Example of a file generated by bc2c
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Figure 2.10 – The OMicroB virtual machine

evaluation. We illustrate the interpretation of the bytecode of an example program, shown in Figure
2.11, which generates the functional value λy.y + 4 and then applies it to the value 8. Figure 2.12 shows
the bytecode generated from the program in Figure 2.11, together with an informal description of the
semantics of each instruction, and the detailed evolution of the register values during the interpretation
of this bytecode.

let add_x x = (* add_x receives an integer x and *)
(fun y -> y + x) (* creates a functional value *)

in (* which takes y and computes y + x *)
let add_4 = add_x 4 in (* add_4 = (fun y -> y + 4) *)
add_4 8 (* = 12 *)

Figure 2.11 – An OCaml program that manipulates a functional value

In this figure, the control flow is represented by arrows annotated with letters, corresponding to
the different states of the virtual machine throughout the execution of the program. For each bytecode
instruction, we show the state of the registers pc, acc, extra_args, and env, as well as the contents of the
stack (sp points to the first element of the stack) at the end of its interpretation. The registers trapSp and
global_data are not modified during the execution of this program and are therefore not represented.
Closures, allocated on the heap, are represented in braces by a code pointer (preceded by the symbol @),
followed possibly by a sequence of elements that constitutes their environment. For example, the closure
corresponding to add_4, whose code begins at instruction 2 and whose environment itself contains a
closure (pointing to instruction 3) as well as the integer value 4, is represented as : {@2 ; {@3} ; 4}.

Limitations of the 16-bit version : The bytecode instructions related to the handling of polymorphic
variants and objects manipulate these variants and object methods in the form of hash codes of their
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  /*  0 */  OCAML_BRANCH_1B, 10,

  /*  2 */  OCAML_RESTART,

  /*  3 */  OCAML_GRAB, 1,

  /*  5 */  OCAML_ACC0,

  /*  6 */  OCAML_PUSHACC2,

  /*  7 */  OCAML_ADDINT,

  /*  8 */  OCAML_RETURN, 2,

  /* 10 */  OCAML_CLOSURE_1B, 0,-7,

  /* 13 */  OCAML_PUSHCONSTINT_1B, 4,

  /* 15 */  OCAML_PUSHACC1,

  /* 16 */  OCAML_APPLY1,

  /* 17 */  OCAML_PUSHCONSTINT_1B, 8,

  /* 19 */  OCAML_PUSHACC1,

  /* 20 */  OCAML_APPLY1,

  /* 21 */  OCAML_POP, 2,

  /* 23 */  OCAML_STOP

code de add_x

génération de add_4
application add_4 8

d

e

g

h

i

j

k

l

m

n

o

p

q

b

a

c

f

State Description
a Beginning of the program
b Jump to address (0 + 10)
c Create a closure (whose code starts at address

10 − 7) in acc
d Push the content of the accumulator (acc) and

put the constant 4 into acc
e Push the content of acc and put sp[1] into acc
f Save the current context and jump to the code

of the closure contained in acc
g Since extra_args < 1, create a closure (whose

code starts at address 2) in acc and return to
the caller

h Push the content of acc and put the constant 8
into acc

i Push acc then put sp[1] into acc
j Save the current context and jump to the code

of the closure contained in acc
k Push the values present in the environment

(env) and set extra_args to the size of env
l Since extra_args = 1, decrement extra_args

m Put the value of sp[0] into acc
n Push the content of the accumulator and put

the value of sp[2] into acc
o Pop sp[0], add it to acc, and put the result in

acc
p End of function : pop two elements and return

to the caller
q Pop two elements

End of the program

state pc acc stack env extra_args
a 0 () [] [] 0
b 10 () [] [] 0
c 13 {@3} [] [] 0
d 15 4 [{@3}] [] 0
e 16 {@3} [4 ; {@3}] [] 0
f 3 {@3} [4 ; @17 ; [] ; 0 ; {@3}] [{@3}] 0
g 17 {@2 ; {@3} ; 4} [{@3}] [] 0
h 19 8 [{@2 ; {@3} ; 4} ; {@2}] [] 0
i 20 {@2 ; {@3} ; 4} [8 ; {@2 ; {@3} ; 4} ; {@3}] [] 0
j 2 {@2 ; {@3} ; 4} [8 ; @21 ; [] ; 0 ; {@2 ; {@3} ; 4} ; {@3}] [{@2 ; {@3} ; 4}] 0
k 3 {@2 ; {@3} ; 4} [4 ; 8 ; @21 ; [] ; 0 ; {@2 ; {@3} ; 4} ; {@3}] [{@2}] 1
l 5 {@2 ; {@3} ; 4} [4 ; 8 ; @21 ; [] ; 0 ; {@2 ; {@3} ; 4} ; {@3}] [{@2}] 0

m 6 4 [4 ; 8 ; @14 ; [] ; 0 ; {@2 ; {@3} ; 4} ; {@3}] [{@2}] 0
n 7 8 [4 ; 4 ; 8 ; @21 ; [] ; 0 ; {@2 ; {@3} ; 4} ; {@3}] [{@2}] 0
o 8 12 [4 ; 8 ; @21 ; [] ; 0 ; {@2 ; {@3} ; 4} ; {@3}] [{@2}] 0
p 21 12 [{@2 ; {@3} ; 4} ; {@3}] [] 0
q 23 12 [] [] 0

Figure 2.12 – Evolution of the virtual machine registers during the execution of the program
from Figure 2.11
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names. These hashes are represented on 31 bits by the standard OCaml bytecode compiler 10, and are thus
incompatible with a representation of values on only 16 bits. To avoid making the use of polymorphic
variants or objects impossible in the 16-bit version of OMicroB, the VM is provided with a compiler plug-
in (implemented as a PPX syntax extension [⚓3]) that automatically translates the names of polymorphic
variants and methods into new names whose hash values fit on 15 bits. Indeed, for the names generated
by this extension, the compiler’s hash function produces values whose 16 most significant bits are all
zero. The generation of these names depends only on the original name, which makes it possible to
preserve a mechanism of separate compilation of different OCaml modules.

Representation of values

As in the standard OCaml virtual machine, the representation of manipulated values is uniform. The
size of these values (16, 32, or 64 bits) is configurable at compilation time, depending on the developer’s
choice. We consider that the native mechanism of the ZAM, which consists of systematically allocating any
non-integer value, and in particular floating-point values, is not necessarily suitable for microcontroller
programming. It can indeed be useful, in order to avoid triggering the memory management system
during execution, to allocate at program startup the memory space required to represent the variables
manipulated by the program, and thus dispense with any dynamic allocation during its execution. We
will return more precisely to the advantages of avoiding the triggering of the garbage collector during
program execution when we address the calculation of a program’s WCET in Chapter 5. In OMicroB,
immediate values (non-allocated) can thus be of two types : values represented as integers, or floating-
point numbers. The memory representation of values in OMicroB is somewhat different from that of the
ZAM. In the following section, we detail the representation of OMicroB values for a 32-bit configuration
of the virtual machine.

10. Regardless of the processor architecture – 32 or 64 bits – of the PC that compiles the program.
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Integer values : Integers are represented in OMicroB in the same way as in the original ZAM : they are
encoded on 31 bits, and the least significant bit of each corresponding OCaml value is set to 1 :

0131

integer value 1

Floating-point values : The representation of floating-point values in OMicroB is based on the IEEE 754
standard [STD85]. This standard separates a floating-point number (32 or 64 bits) into three elements :
its sign s, its exponent e, and its mantissa m. On 32 bits, a floating-point value is thus represented by one
sign bit, 8 bits for its exponent, and 23 bits for its mantissa :

022233031

si
gn exponent mantissa

In OMicroB, a positive floating-point number is naturally represented in this format on 32 bits :
022233031

0 exponent mantissa

It should be noted that the representation of an integer and that of a floating-point number can
potentially collide. Indeed, if a floating-point number has its least significant bit set to 1, it becomes
indistinguishable from an integer. This situation, however, does not cause any issues in our context,
thanks to the safety provided by the strict static typing of OCaml programs : at no point can a floating-
point number be confused with an integer, and vice versa. All operations in the program are performed
on values of compatible types ; for example, there is no risk of adding a value representing an integer to
a value representing a floating-point number.

Nevertheless, the standard library provides a polymorphic comparison function, named compare,
capable of comparing two variables of any type. It is therefore important, given that a floating-point
number and an integer are indistinguishable at runtime, that there exists a single consistent way to com-
pare two immediate values (either two integers or two floating-point numbers). This constraint, which
effectively allows two floating-point numbers to be compared as if they were integers, requires that the
representation of negative floating-point numbers be modified, so that the ordering relation between the
representation of integers and floating-point numbers is preserved. Consequently, in OMicroB, negative
floating-point numbers are represented with the bits of their exponent and mantissa inverted :

022233031

1 exponent mantissa

This modification of the floating-point representation compared to the standard introduces a slight
overhead for the execution of floating-point arithmetic operators : before applying these operators, a
"xor" operation is performed on OMicroB’s negative floating-point numbers to invert the bits of the
mantissa and exponent, thus making them compatible with the standard implementations of floating-
point operators.
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Heap pointers : The distinction between the different categories of OCaml values is truly useful only
when separating immediate values (in OMicroB : integers and floats) from allocated values, which are
represented by addresses on the heap. Indeed, a non-ambiguous dichotomy is necessary for the virtual
machine’s garbage collector so that it can distinguish a pointer to a heap value (which it must visit) from
an immediate value (which it must ignore).

In OMicroB, due to the representation of floats as immediate values, it is no longer possible to use
the least significant bit of a value to deduce its type (a float may indeed end with 1 or 0). To represent
heap pointers, OMicroB employs a trick derived from a particularity of the IEEE 754 standard. In this
standard, values for which all exponent bits are set to 1 (i.e., where the exponent equals 128 in a 32-bit
representation) correspond to special values, which are further divided into two categories :

1. If the mantissa is equal to 0, then this representation corresponds, depending on the sign bit, to
the value ±∞.

2. If the mantissa is nonzero, these values correspond to NaN (Not a Number) : values used to represent
the result of certain invalid operations (for example, division 0/0 or computing the square root
of a negative number). These values are very numerous, since any floating-point number with a
nonzero mantissa and an exponent equal to 128 is a NaN : there are thus 223 − 1 different NaN
values in a 32-bit representation. In OMicroB, we exploit this large space of « unused » floating-
point values to represent pointers to OCaml values allocated on the heap.

Thus, we represent pointers to the heap by a NaN value whose bit pattern begins with 0111 1111 11 :
021222331

0 1 1 1 1 1 1 1 1 1 heap address

On a 32-bit representation of the virtual machine, this NaN-boxing mechanism [Gud93] with low-bit
tagging thus provides us with a 221-bit space for representing addresses, allowing the allocation of 219

OCaml values (since all addresses are multiples of 4, given that an OCaml value occupies 4 bytes).
This theoretical 2-megabyte address space is therefore more than sufficient for the hardware we target,

which is limited to at most a few tens of kilobytes of RAM, and for which addresses to RAM are often
physically limited to 16 bits. For more resource-rich hardware, using a 64-bit configuration of the virtual
machine provides a 250-bit space for representing an address, i.e., over 247 distinct OCaml values, since
each then occupies 8 bytes.

Any NaN value actually computed by the program is represented in OMicroB by the unique value :

022233031

0 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The standard library of OMicroB is adapted so that operations on NaNs are consistent with the IEEE
754 standard (which stipulates, for example, that an equality test between two NaNs is always false).

Block headers : Finally, the headers of OCaml blocks allocated on the heap are represented on 32 bits,
with 8 bits for the tag, 22 bits for the size, and 2 bits for the color :
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012222431

tag taille

co
ul

eu
r

16- and 64-bit representation : The details of value representation in OMicroB for 16-, 32-, and 64-
bit configurations are provided in Appendix A. The 64-bit representation is similar to the 32-bit one,
extending integer values to 63 bits and representing floating-point numbers according to the IEEE 754
standard in double-precision format. The 16-bit representation is close to the binary16 representation of
the IEEE 754 standard, but allows only 15 effective bits (to distinguish a floating-point number from a
pointer) ; we therefore reduce the mantissa of a floating-point number from 10 bits to 9 bits.

2.3.3 Runtime Library

The standard library available with OMicroB includes many common modules from the standard
OCaml virtual machine, such as the List module, which defines numerous functions for manipulating
lists (for example, the map function, which applies a function to all elements of a list), the Queuemodule,
which allows the representation of mutable first-in-first-out (FIFO) queues, and the Hashtbl module,
which provides hash table functionality. In addition to these modules common to both implementations,
there are modules specific to microcontroller programming, such as the Avrmodule, which defines low-
level interaction primitives for ATmega microcontrollers, or the LiquidCrystalmodule 11, which allows
communication with a liquid crystal display. Conversely, certain modules that are irrelevant or of little
use for microcontroller programming, such as the Unix module for performing system calls, are not
available.

Using OCaml to define the basic primitives for microcontroller configuration and interaction with
its environment increases the safety of the programs. Indeed, OCaml’s strict typing, together with its
support for Generalized Algebraic Data Types (GADTs), allows the definition of low-level primitives that
enforce certain typing constraints.

For example, the bits of the SPCR register (SPI Control Register), which configure the serial port of an
AVR microcontroller, are represented by the type spcr_bit :

type spcr_bit = SPR0 | SPR1 | CPHA | CPOL | MSTR | DORD | SPE | SPIE

Meanwhile, the bits of the SPSR register (SPI Status Register), which allows monitoring the state of the
serial communication (for example, to check whether a transmission has completed) are represented by
the type spsr_bit :

type spsr_bit = SPI2x | SPSR1 | SPSR2 | SPSR3 | SPSR4 | SPSR5 | SPSR6 | SPIF

The microcontroller registers are then represented by a type ’a register parameterized by the type
of bits they contain :

11. Developed by a master’s student during an internship focused on constraint-based programming with OMicroB [Pes18].
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type ’a register =

| (* ... *)

| SPCR : spcr_bit register

| SPSR : spsr_bit register

| (* ... *)

The primitive set_bit, of type ’a register -> ’a -> unit, allows setting a bit of a microcontroller
register to 1. At compile-time, any use of this function in a program triggers, thanks to the type system,
a check that the bit passed as the second argument indeed belongs to the register passed as the first
argument. For example, the incorrect call set_bit SPCR SPIF results in an explicit compilation error :

Error: This variant expression is expected to have type Avr.spcr_bit

The constructor SPIF does not belong to type Avr.spcr_bit

Hint: Did you mean SPIE?

This mismatch between the name of the bit and the name of the register could not have been detected
using simple macros to represent bit names in a low-level language such as C. The verification of the type-
correctness of a program illustrates one of the advantages of using a high-level programming language,
even for such low-level interactions.

In OMicroB, program memory is automatically managed by a garbage collector that implements a
standard stop-and-copy algorithm. It indeed manipulates two heaps for the values allocated on the heap :
a from-space and a to-space. At each GC execution, the values still used by the program are copied from the
from-space to the to-space, after which the roles of the two spaces are swapped (the from-space becomes
the to-space, and vice versa).

To achieve this, the memory management algorithm traverses a set of roots corresponding to registers
and other memory blocks that may contain pointers to heap-allocated values (the arrows pointing to the
heap in Figure 2.10 represent such pointers), copies the values to which they point into the new space,
and updates each pointer with the new location of the copied values.

The GC takes advantage of the distinction introduced by the value representation in OMicroB : it
visits all pointer values encoded via NaN-boxing. Such an algorithm has the advantage of being fast but
has the notable drawback of reserving half of the available RAM (the to-space) for its operation. A Mark
and Compact type garbage collector, which avoids "wasting" half of the heap (at the cost of somewhat
slower execution), is also available.

2.3.4 Creation of an Executable

Compilation for the Target Architecture

Compiling an executable program consists of the final step before transferring the program to the
target hardware. It makes use of existing C compilers, such as avr-gcc or sdcc. The C compiler then performs
the linking between the C file generated by bc2c, the virtual machine interpreter, and its runtime library
(standard library and garbage collector). The resulting file is then transferred to the microcontroller (using
an appropriate tool such as avrdude) and executed on it.
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Using the C language as a sort of portable assembler allows OMicroB to be deployed with minimal
effort on many different architectures. To support a new microcontroller architecture, the virtual machine
only requires rewriting the low-level C primitives essential for interacting with the hardware (such as
functions to read the microcontroller’s flash memory), and does not require any deep modification of the
interpreter or other OMicroB components.

Debugging and Simulation of Programs for Microcontrollers

Generating generic C code also allows the virtual machine to run on more conventional hardware.
Indeed, the gcc compiler can be used on the computer where the program was written to compile it
into an executable compatible with that computer’s architecture (an x86 or x86-64 executable). This
compilation mode allows programs to be simulated on a computer before even transferring them to the
target microcontroller, thereby simplifying the debugging process.

In this regard, OMicroB includes tools that simulate the effects of a program with a graphical repre-
sentation of the microcontroller’s input/output pins (Figure 2.13). This simulation allows verifying the
consistency of program execution with the expected behavior without forcing the developer to transfer
the program to a real microcontroller each time.

Figure 2.13 – Simulation of the state of the pins of an ATmega32u4 microcontroller

The OMicroB simulator, like the OCaPIC simulator, also allows representing the interactions between
the microcontroller and the connected circuit : it indeed provides the programmer with the ability to
describe the components attached to the microcontroller (buttons, displays, sensors, . . . ) in order to also
simulate the effect of the program on them. For example, Figure 2.14 shows the simulation of a small
program that displays a smiling face on an OLED screen (Organic Light-Emitting Diode) when the user
presses the “SMILE” button, and a frowning face when the user presses the “FROWN” button. The
various components of the circuit are described in a circuit.txt file used by the simulator to produce
the appropriate displays.
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circuit.txt

window width=350 height=150 bgcolor=lightgray title="Simulator"
oled x=30 y=10 column_nb=128 line_nb=8 cs=PIN12 dc=PIN4 rst=PIN6
button x=310 y=100 width=40 height=40 label="SMILE" pin=PIN7 color=green
button x=310 y=50 width=40 height=40 label="FROWN" pin=PIN8 color=red

Figure 2.14 – Simulation of a small hardware setup

2.4 Optimizations of OMicroB

Considering the significant limitations of the hardware for which the OMicroB virtual machine is
intended, we focused our work on reducing the memory footprint of programs executed on microcon-
trollers. To this end, OMicroB implements several optimizations aimed at limiting the resource consump-
tion of both the virtual machine and the OCaml programs. For example, reducing the size of bytecode
instruction opcodes from 32 bits to 8 bits constitutes such an optimization. In this section, we present two
other optimizations applied to the virtual machine and OCaml programs.

2.4.1 Ahead-of-Time Program Evaluation

The bytecode interpreted at the start of an OCaml program corresponds to a sequence of initializations
of values necessary for its execution. First, the program deserializes certain constants (lists, strings, . . . )
and allocates them on the heap. Program initialization then continues with the allocation of closures used
in the program, the creation of modules, and the computation of global variables. This initialization phase
can be slow and consume a non-negligible amount of memory. In particular, the stack depth required
to load the modules used by the program can be substantial. For example, the program in Figure 2.15,
which defines a class pt, requires at least 106 stack levels to load the modules responsible for object usage
in OCaml.

However, the execution of an OCaml program is entirely deterministic during these precomputation
phases, regardless of the hardware on which it runs. This determinism persists until the program’s first
input/output operation, which initiates communication between the program and its environment. It is
therefore possible, in order to speed up program startup and especially to reduce memory consumption,
to perform the various program initialization steps ahead of its execution on the microcontroller. The
interpretation of the bytecode is thus simulated by bc2c on the computer on which the program is
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class pt (x:int) (y:int) =
object
method get_x = x
method get_y = y

end

let () =
Avr.delay 1000;
let p = new pt 1 2 in
p#get_x

Figure 2.15 – Example of an OCaml program manipulating objects

compiled up to the first input/output, and the resulting memory state (i.e., the values contained in the
heap, the stack, and the program’s global variable table) is then directly written into the C code generated
by bc2c. Consequently, the virtual machine’s stack and heap, when producing the C code that embeds the
OCaml bytecode, are pre-populated with values corresponding to closures and computed values before
the first instruction that begins the interaction between the program and its environment. This process
of ahead-of-time evaluation can be seen as a form of partial evaluation [JGS93] applied to the program’s
bytecode.

In the example of Figure 2.15, enabling ahead-of-time evaluation (which has the effect of pre-executing
the program up to the call to the primitive Avr.delay 12)) reduces the required stack size for executing
the program to only 16 levels.

2.4.2 Tailor-made virtual machine

Most compiled programs do not make use of the entire bytecode instruction set associated with the
OCaml language, but only a subset corresponding to the language features actually used in the program.
For example, a program that does not use OCaml’s object layer will not contain, after compilation to
bytecode, the GETPUBMET instruction that allows calling a method of an object. Similarly, since many
arguments can fit in a single byte, it is rare that instructions specialized for four-byte arguments, such as
the CLOSURE_4B instruction, are actually used. Therefore, including in the final executable an interpreter
capable of handling such instructions absent from the program’s bytecode represents a waste of space,
especially since microcontroller memory is a scarce resource.

OMicroB avoids this unnecessary memory waste by including, during program compilation, a by-
tecode interpreter that can only process the instructions actually present in the program’s bytecode. To
achieve this, directives for the C compiler preprocessor are added to the interpreter code to prevent the
compilation of code related to the interpretation of instructions not used in the program. Each opcode
present in the program then corresponds to a macro, defined in the C code generated by bc2c, representing
a constant value (chosen so that all values are contiguous). The total size of the executable transferred to
the microcontroller is thus reduced.

Figure 2.16 illustrates the structure of the tailor-made interpreter on an excerpt of it : the code
responsible for handling the BRANCHIF_4B instruction is only compiled if the macro corresponding to this
instruction is defined in the C code generated by bc2c.

12. This primitive allows pausing the program for the duration indicated by its parameter (in milliseconds).
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#ifdef BRANCHIF_4B
case BRANCHIF_4B :
/* instruction interpretation code */

break;
#endif

Figure 2.16 – Tailor-made interpreter

Other optimizations based on the same idea of generality of a C program could also be envisaged.
We could indeed go even further in our approach of creating a virtual machine specific to each program,
for example by statically replacing each bytecode instruction of a program with the corresponding set of
C instructions, thereby eliminating the need for a bytecode interpreter. This approach was followed by
the OCamlCC tool [MV13], whose first implementation transformed OCaml bytecode into a C program
by replacing each bytecode instruction with the associated low-level code through a macro-expansion
mechanism. Such an approach provides good execution speed, but the program size grows rapidly
because multiple references to a particular bytecode instruction each trigger duplication of the low-level
code necessary to execute it. Other approaches, such as CeML [Cha92] or Camlot [Cri92], transform the
source code of a program written in an ML language into C code, which can then benefit from C compiler
optimizations. The code generated by these solutions is still quite large, and their runtime libraries
are generally also sizeable, because they must, for example, include a generic application mechanism
to construct closures in the case of partial function application. These approaches are therefore rather
reserved for hardware where memory consumption considerations are less important than program
execution speed. OMicroB then appears to us as a good compromise between the portability provided
by implementing the VM in C and the reduction of program size resulting from representing programs
as bytecode, which factors sequences of lower-level instructions. We therefore follow this pragmatic
approach, for which execution speeds may be slightly lower, without being particularly penalizing for
the applications we target.
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Chapter Conclusion

The use of the OMicroB virtual machine constitutes a generic and configurable approach to enable the
execution of OCaml programs on a wide variety of devices. In particular, the optimizations implemented
in OMicroB allow the interpretation of OCaml bytecode on microcontrollers with very limited hardware
resources. This virtual machine is capable of executing OCaml programs on AVR microcontrollers with
severely constrained RAM, such as the ATMega325p (2 KB of RAM), ATmega32u4 (2.5 KB of RAM), or
ATmega2560 (8 KB of RAM). Several academic projects aiming to port OMicroB to other architectures,
such as PIC32 or ARM Cortex-M0 (used by the micro :bit development boards, designed by the BBC to
support teaching programming to young children [⚓20]), are currently underway, and the initial results
are very promising : the first OMicroB ports have indeed been carried out without difficulty [PB19].

The compilation model for OCaml programs considered here, which consists of using a high-level
language bytecode together with a generic interpreter, greatly increases program portability : the same
OCaml program can thus be easily ported from one device to another. Moreover, this portability allows
programs to be easily simulated while taking into account memory constraints imposed by the virtual
machine configuration (such as the stack or heap size), providing an accelerated and simplified debugging
process.

In order to continue efforts aimed at reducing the RAM footprint of OCaml programs, several tech-
niques are currently under study. In particular, a fine-grained analysis to detect immutable constant
values in an OCaml program (such as strings or sprites in a video game program) could allow these va-
lues to be moved into the program’s flash memory at compile time, thereby freeing up the more limited
RAM.

Table 2.1 lists the main differences between OMicroB and the standard OCaml virtual machine. In
Chapter 7, we will discuss OMicroB’s performance in more detail, both in terms of OCaml program
execution speed and memory footprint.

Due to its richness and high level of expressiveness, OCaml is a powerful language for describing
the algorithmic behavior of programs, and its type safety provides significant guarantees for embedded
program development. However, OCaml is currently not well suited for describing concurrent aspects of
a program, nor for developing real-time systems. Yet, the embedded programs we consider have many
concurrent traits, and the critical systems they control very often correspond to real-time systems, for
which execution times must be tightly controlled. Consequently, in the next chapter, we introduce the
OCaLustre language, an extension of OCaml for synchronous programming, which provides a lightweight
concurrency model suitable for microcontroller applications. This extension is fully compatible with
OMicroB, and thus benefits from both the advantages of OCaml and the optimizations of the virtual
machine described in this section.
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ZAM (ocamlrun) OMicroB
Opcode size 32 bits 8 bits

Number of instructions 148 148 + 46 specialized instr.
= 194

OCaml value size non-configurable configurable
(architecture-dependent) (16, 32, 64 bits)

Address size (address space) 32 bits (4 GB) 21 bits (2 MB)
in a 32-bit configuration

Floating-point representation With encapsulation Immediate
(heap allocation)

GC algorithm Hybrid Stop and Copy
(generational / incremental) or Mark and Compact

Table 2.1 – Main differences between the standard OCaml virtual machine and OMicroB





73

3 OCaLustre : Programmation synchrone en
OCaml

OCaLustre is a synchronous dataflow extension of the OCaml language, inspired by the Lustre
language [CPHP87, Ber86, HCRP91], allowing the use of the synchronous abstraction layer to program
concurrency in applications, while leveraging the high-level features of the host language, OCaml, to
develop the logical aspects of programs. This extension, with a very light memory footprint, is designed
to be executed in conjunction with the OMicroB virtual machine to run lightweight and safe concurrent
programs on resource-constrained microcontrollers.

In this chapter, we describe this language extension in detail. In the first section, we present the
main traits and principles of the language that enable the creation of synchronous programs in OCaml.
In particular, we discuss the synchronous clock system implemented in OCaLustre, which allows the
presence of certain values to be conditioned during the execution of a program. We then present the
specification of the type systems of OCaLustre programs, covering both the "standard" types representing
the values carried by program elements, as well as the clock types associated with the notion of timing in
a synchronous program. Finally, we formally describe the operational semantics of the language, derived
from that of the Lustre language.

3.1 Programming in OCaLustre

In this section, we present the main concepts and general features of the OCaLustre language. The
purpose of this presentation is to teach a potential OCaLustre developer the different aspects of the
language that allow them to write a correct program. Apart from certain specific syntactic variations,
these aspects should not surprise readers familiar with the Lustre language (or its derivatives), as the
OCaLustre language follows the same semantic foundations.

3.1.1 Language Syntax

In the manner of a Lustre program, an OCaLustre program is composed of nodes, which compute
streams of values, as well as standard OCaml functions, which handle the algorithmic aspects of programs
by leveraging the expressive power of the OCaml language. An OCaLustre node is defined using the
let%node keyword, followed by its name, the names of its input parameters, and a tuple representing
its different output streams (labelled with the keyword return). The body of a program is a system
of equations solved at each synchronous execution instant of the program, thereby assigning values to
the output streams of each node in the program. The equations within the body of a node are stream
definitions of the form y = e, where y is the name (or a tuple of names) of the defined stream, and e is an
expression that evaluates the value of the stream(s) concerned.
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We first present a partial version of the language, which we will enrich throughout the discussion.
In this version, an expression may correspond to a constant (including the unit value), a variable, a
constructor of an enumerated type defined in OCaml, the application of the conditional operator (if-then-
else), the application of an arithmetic or logical operator, or a tuple. Figure 3.1 describes the syntax of this
partial version of the language in Backus-Naur Form (BNF) 1.

〈int〉 ::= [0 − 9] +
〈float〉 ::= [0 − 9] + .[0 − 9] ∗
〈bool〉 ::= true | false

〈constant〉 ::= () | 〈int〉 | 〈float〉 | 〈bool〉
〈ident〉 ::= [a − z] + [a − zA − Z0 − 9] ∗
〈lidents〉 ::= () | (〈ident〉[,〈ident〉] ∗ ) | 〈ident〉
〈enum〉 ::= [A − Z] + [a − zA − Z0 − 9] ∗
〈int_op〉 ::= + | - | * | / | mod
〈float_op〉 ::= +. | -. | *. | /.
〈bool_op〉 ::= && | ||
〈comp_op〉 ::= < | > | <= | >= | = | <>
〈binop〉 ::= 〈int_opt〉 | 〈float_op〉 | 〈bool_op〉 | 〈comp_op〉
〈unop〉 ::= - | -. | not
〈eqn〉 ::= 〈lidents〉 = 〈expr〉
〈leqns〉 ::= 〈eqn〉 | 〈eqn〉;〈leqns〉
〈expr〉 ::= 〈constant〉

| 〈ident〉
| 〈enum〉
| 〈expr〉〈binop〉〈expr〉
| 〈unop〉〈expr〉
| if 〈expr〉 then 〈expr〉 else 〈expr〉
| 〈expr〉,〈expr〉
| (〈expr〉)

〈node〉 ::= let%node 〈ident〉 〈lidents〉 ~return:〈lidents〉 = 〈leqns〉

Figure 3.1 – Partial Syntax of the OCaLustre Language

Here’s the English translation of your text :
—
Thus, the example in Figure 3.2 corresponds to the definition of the node named plus_minus, which

computes a pair corresponding to the sum and difference of its two input parameters, and the associated
table represents the evolution of the values of each flow of this node during its execution.

1. The representation of literals and identifiers is simplified here. In the actual implementation of the OCaLustre compiler,
any literal or identifier valid in OCaml is also valid in OCaLustre.
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let%node plus_minus (x,y) ~return:(p,m) =
p = x + y;
m = x - y

instant 0 1 2 3 4 5 6 . . . i . . .
x 3 2 6 32 8 26 67 . . . 7 . . .
y 4 12 42 9 22 7 53 . . . 3 . . .
p 7 14 48 41 30 33 120 . . . 10 . . .
m -1 -10 -36 23 -14 19 14 . . . 4 . . .

Figure 3.2 – Example of an OCaLustre node

Initialized Delay

In an imperative language, it is common to assign a value to a variable based on the value it already
contains : for example, incrementing a variable (x := x + 1) implicitly accesses the variable’s « previous »
value in order to update its « current » value. OCaLustre, however, is based on a programming model
closer to functional programming, in which a variable cannot be modified during program execution. In
reality, the dataflow semantics implicitly redefine new variables at each synchronous instant, and each of
these definitions is itself immutable.

Nevertheless, it is sometimes necessary to access a variable’s earlier value in order to assign it a new
current value (typically, to increment a counter). In an electronic circuit, it may be useful to access the
previously emitted value of a sensor in order to compute its difference with the current valuefor example,
to determine the temperature change of a sensor between two instants, with the goal of deducing the
rate of growth.

Therefore, in order to allow a stream to access, at instant i, the value of another stream at instant i−1, the
OCaLustre language provides an initialized delay operator, written≫ and similar to the fby operator (for
“followed-by”) used in the dataflow language Lucid [AW77], as well as in various synchronous languages
such as Heptagon [Gér13], Lucid Synchrone [CP99], or Lustre V6 [JRH19].

This operator, used in an expression like 0 ≫ x, means that the expression takes the constant on the
left of≫ (i.e., 0) as its value at the very first instant of program execution, and then the previous value of
the expression on the right of the operator (i.e., x) for all future instants :

k ≫ x ≡ (k, x0, x1, x2, . . . , xi−1, . . . )

With this operator, it becomes easy to represent sequences of values. For example, the following node
computes a stream n that corresponds to the sequence of natural numbers :

let%node count () ~return:(n) =

n = (0 ≫ (n+1))

Indeed, the stream n has the constant value 0 at the first instant, followed by the previous value of
the expression n+1 at each successive instant.

In the same way, the following example computes the Fibonacci sequence :
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let%node fibonacci () ~return:f =

f = (0 ≫ ((1 ≫ f) + f))

The table in Figure 3.3 details the evolution of the different values of the expressions of the fibonacci
node over time.

instant 0 1 2 3 4 5 6 7 8 . . .
f 0 1 1 2 3 5 8 13 21 . . .

(1 ≫ f) 1 0 1 1 2 3 5 8 13 . . .
(1 ≫ f) + f 1 1 2 3 5 8 13 21 34 . . .

Figure 3.3 – Computation of the Fibonacci sequence f using the initialized delay operator

Let us illustrate the use of this operator in the context of developing programs for microcontrollers.
We return to the example program from Section 1.1.2, in which the microcontroller makes an LED blink
at regular intervals.

A very simple OCaLustre program can reproduce this behavior. We define the following OCaml
enumerated type and OCaLustre node :

type light_state = ON | OFF

let%node blinker () ~return:led =

led = (ON ≫ if led = ON then OFF else ON)

The flow led is therefore initialized with the value «ON » to switch the LED on, and at each subsequent
synchronous instant the lamp takes the opposite state of its previous one.

The≫ operator also makes it easy to represent flows whose sequence of values repeats cyclically.
For example, if we define an enumerated type tictactoc as follows :

type tictactoc = Tic | Tac | Toc

The flow x then corresponds to the sequence of values (Tic, Tac , Toc , Tic , Tac , Toc , . . . , Tic , Tac ,
Toc , . . . ) :

x = (Tic ≫ (Tac ≫ (Toc ≫ x)))

The node blinker can therefore also be written as follows :

let%node blinker () ~return:led =

led = (ON ≫ (OFF ≫ led))

It is also possible to redefine classical operators from the Lustre language using the initialized delay
operator :
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— The Lustre initialization operator -> can be rewritten using the≫ operator as follows :

x -> y ≡ if (true ≫ false) then x else y

— The delay operator pre can also be defined using≫ , provided an initial value k (of the correct
type) is supplied for the stream in question :

pre x ≡ k≫ x

Our choice to use the≫ operator in OCaLustre, instead of a combination of these operators, frees
the compilation of an OCaLustre program from certain considerations regarding the initialization of
streams. Indeed, since for any x the value of the stream pre x at instant 0 is undefined (nil), it is usually
important to check, at compile time, that the pre operator only appears, in the definition of a stream, to
the right of a ->. If this were not the case, the value of the stream at instant 0 would be unknown, and the
program would have an indeterminate behavior. This issue of stream initialization, which therefore does
not arise in OCaLustre, can nevertheless be resolved statically through the use of a type system capable
of representing the position of prewithin expressions [CP04].

Locally scoped streams

It should be noted that, in the definition of an OCaLustre node, the equations do not necessarily
have to correspond to input or output streams. For readability, or to represent an internal register, or
to factorize certain computations, it may be useful to define streams that are considered to have a local
scope within the node. In OCaLustre, a local stream is defined without any particular keyword ; its mere
absence from the node’s signature is enough to limit its scope.

The fibonacci node from the previous section can therefore be rewritten, for improved readability,
as a fibonacci2 node defining the local streams sum_last and previous_f :

let%node fibonacci2 () ~return:(f) =

f = (0 ≫ sum_last);

previous_f = (1 ≫ f);

sum_last = previous_f + f

Node application

To organize the different behaviors of a program into distinct blocks of code, we introduce into the
language a mechanism of node application, similar to what exists in the Lustre language. The call (or
application) of a node in an OCaLustre program makes it possible to factorize redundant pieces of code,
thereby reducing the memory footprint of a program. It follows the standard OCaml function application
syntax : for example, the following node calls the plus_minus node defined earlier, with the pair x,y as
input parameters, and with streams a and b as outputs :

let%node call_pm (x,y) ~return:(a,b) =

(a,b) = plus_minus (x,y)
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It should be noted that, in the language semantics, each call to a node actually corresponds to a call
to an instance of that node. Each call point to a node implicitly triggers the initialization of an instance of
that node and, as a result, no stream is shared between these different call points.

For example, the following node defines two counters executing concurrently :

let%node two_cpt () ~return:(c1,c2) =

c1 = count ();

c2 = count ()

The internal counters in each of the calls to count are distinct, and the streams c1 and c2 increment
at the same rate, since each has its own internal register updated at every synchronous instant.

External calls to OCaml functions

The operators built into OCaLustre are by nature very simple : they are limited to basic arithmetic
and logical operators, complemented by a few operators referring to time. Yet the host language of this
extension, OCaml, has considerable expressive power, through its support for multiple programming
paradigms (imperative, functional, object-oriented) and powerful constructions (functors, generalized
algebraic data types, polymorphism, . . . ), which provide the developer with high-level tools for writing
complex programs.

To combine the synchronous aspects of a programwhich govern the interaction between the different
software components of an applicationwith its purely algorithmic aspects, which exploit the richness of
the host language, OCaLustre is enriched with a call operator that allows invoking an OCaml function
from within an OCaLustre node.

For example, in the following program, the synchronous node sqrt_cpt calls the OCaml function f,
which computes, within a synchronous instant, the square root of the stream a.

let f x = if x > 0.0 then sqrt x else 0.0

let%node sqrt_cpt () ~return:b =

a = (0.0 ≫ (a +. 1.0));

b = call f a

It should be noted that the use of call can be « dangerous » because it opens OCaLustre to all
the constructs of the OCaml language, some of which may perform operations incompatible with the
semantics of the synchronous model 2, or which may never return (due to an infinite loop or the raising of
an exception). It is therefore the programmer’s responsibility to guard against such erroneous behaviors.
For safety, throughout the rest of this thesis, we assume that call is only used to execute purely functional
code that terminates.

The syntax of OCaLustre expressions presented in figure 3.1 is then extended with the initialized
delay operator, node application, and the operator for applying an n-ary OCaml function :

2. For example, the behavior of an OCaLustre program in which two concurrent uses of call modify the same mutable
global variable is undefined.
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〈expr〉 ::= (. . . )

| 〈constant〉≫ 〈expr〉
| 〈ident〉 (〈expr〉)
| call 〈ident〉 〈expr〉[ 〈expr〉]∗

3.1.2 Synchronous Clocks

Each component of an OCaLustre program executes concurrently. As a result, every equation defining
the value of a flow in a node is evaluated at each synchronous instant, and every expression within these
equations is also evaluated at that instant. For example, the following equation triggers the evaluation,
in the same instant, of both e1 and e2— the value assigned to x is then chosen according to the value of
the boolean b :

x = if b then e1 else e2

This semantics differs from that of general-purpose programming languages, in which the evaluation
of the if-then-else conditional operator is typically lazy. For example, in OCaml, the evaluation of the
following expression only executes the positive branch when b is true, or the negative branch when b is
false, and the message displayed is "true" (resp. "false") :

if b then print_string "true" else print_string "false"

By contrast, in OCaLustre, both branches of a conditional are executed at every instant : for example,
if we define the node count that computes a counter :

let%node count () ~return:c =

c = (0 ≫ (c + 1))

Then, in the following equation, the incrementation of the counter in count () is performed at every
instant :

x = if b then count () else 0

However, to be able to write non-trivial programs, it is necessary to provide a way to conditionally
execute certain parts of a program, thereby recovering the notion of control flow. From the perspective of
synchronous programming, this amounts to slowing down the execution of some branches of the program :
that is, ensuring that certain expressions are executed only at particular instants, effectively downsampling
in time the values of some flows in an OCaLustre program.
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Downsampling

In OCaLustre, to ensure that an expression e only has a value when a certain boolean flow b is true,
we use the annotation [@when b]. For example, the following equation declares a flow x whose value is
that of the expression (y+1) only when the flow clk evaluates to true, and which has no value otherwise :

x = (y+1) [@when clk]

We then say that the flow x is clocked by the clock clk. A clock is a boolean flow that represents
the presence condition of the flows it governs : when the value of a clock is false, all flows it controls are
considered absent (they have no value). In that case, it is forbidden to access the values of those flows.
For example, the following OCaLustre program fragment is incorrect :

let%node bad_clocks () ~return:(x,y,w) =

w = 2;

y = 3;

x = w [@when b] + y

Here, the flow y, which is not sampled by any clock (we say it is clocked by the base clock — i.e. the
fastest clock of the node, which is an implicit parameter of every node), is added to the flow w, which is
clocked by b. Computing the value of x when b is false has no meaning, since there is “nothing” on the
left-hand side of the addition 3. All binary operators in OCaLustre can only be applied to flows that are
clocked by the same clock.

Furthermore, flows sampled by a clock that is itself absent (because its own clock is false) are also
absent. In the following example, the flow z therefore has no value because its clock ck2 is absent :

let%node sampled_clock () ~return:(ck1,ck2,z) =

ck1 = false;

ck2 = true [@when ck1];

z = 42 [@when ck2];

In contrast to positive subsampling, OCaLustre also provides a negative subsampling annotation
[@whennot _ ]. This makes it possible to restrict the presence of a value to the condition that a boolean
is false. Thus, in the following excerpt, the flows a, b, and c have a value only if the flow clk evaluates to
f alse. We then say that they are sampled by the clock not clk (or clk) :

a = 2 [@whennot clk];

b = 3 [@whennot clk];

c = a + b

3. It should be noted that in the language semantics, absence of a value is not equivalent to the presence of the constant nil,
nor of any default value. It is denoted ⊥.
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The only operator in OCaLustre that allows manipulation of flows not sampled by the same clock
is the merge operator : this operator “merges” flows sampled by complementary clocks. It takes as first
parameter a clock, then a flow sampled positively by that clock, and then a flow sampled negatively by
the same clock. In the following example, the flow k takes the value of the flow i when d is true, and the
value of the flow j when d is false :

c = (count () < 5);

d = (true ≫ false) [@when c];

i = 23 [@when d];

j = 45 [@whennot d];

k = merge d i j

The runtime values of the different flows defined in this example are given in Figure 3.4. It should
also be noted here that the use of the @when operator performs a sampling of the values, and does not
introduce any delay in the computation of those values : the expression (true ≫ false) is evaluated at
every instant of execution (even when c is false) 4, but the corresponding value is only associated with d
when c is true. We will return to the distinction between sampling and delay when we discuss the case
of conditional applications in Section 3.1.2.

instant 0 1 2 3 4 5 6 7 8 9 10 . . .

c true true true true true false false false false false false . . .
d true false false false false ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ . . .
i 23 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ . . .
j ⊥ 45 45 45 45 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ . . .
k 23 45 45 45 45 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ . . .

Figure 3.4 – Evolution of clocked flow values

The merge operator can therefore be seen as the traditional if-then-else conditional operator with lazy
evaluation from general-purpose languages. It is important to specify that the result (the flow k) is present
at the same clock rate as the sampling clock of flows i and j (the flow d— whether its value is true or
f alse), and is not faster : since d is only present when c is true, k is present only under the same condition.

The syntax of OCaLustre expressions, extended with sampling annotations and the merge operator,
is now complete :

〈expr〉 ::= (. . . )

| merge 〈ident〉 〈expr〉 〈expr〉
| 〈expr〉 [@when 〈ident〉]
| 〈expr〉 [@whennot 〈ident〉]

4. This is due to Lustre’s substitution principle, which states that if a flow x is equal to expr, then any occurrence of expr in the
program can be replaced by x, and vice versa, without changing its semantics. The expression (true ≫ false) could therefore
be extracted into a new variable, evaluated at each instant.



82 Chapitre 3. OCaLustre : Programmation synchrone en OCaml

Special case : constants

In OCaLustre, constants have the particularity of being clocked by an arbitrary clock : we can consider
that their clock type is polymorphic, and therefore they are compatible with any clock. This distinction
stems from the desire to make OCaLustre programs simpler to write and to read. For example, in the
following :

let%node ex_const (a,b) ~return:x =

c = a;

d = b [@when c];

v = 12 [@whennot c];

x = merge c d (4 [@whennot c] + v)

an expression such as (4 [@whennot c]) is relatively “heavy,” and is not useful given the context of
its use (as the third parameter of a merge whose first parameter is c). Here, the clock of 4 can only be c.
In the same way, since the variable v is added to a value clocked by c, its clock is also c.

The same node is thus more readable when the constants are stripped of their clock annotations :

let%node ex_const (a,b) ~return:x =

c = a;

d = b [@when c];

v = 12;

x = merge c d (4+v)

Conditional application

When a flow is defined as the result of a node call, it is important to distinguish between the
subsampling of the call parameters and the subsampling of the return value. Indeed, subsampling an
input value serves to condition the execution of the node call, and thus to slow down the execution frequency
of the called node ; whereas subsampling the return value of a node call merely serves to limit the presence
of this value.

For example, below we give the definition of a node counterwhich computes the sequence of natural
numbers, modulo n :

let%node counter n ~return:c =

c = (0 ≫ (c + 1)) mod n

We then define a node call_counterwhich computes two flows : a flow a, corresponding to the call
to counter with subsampling of its parameters, and a flow b, which corresponds to the call to counter
with subsampling of its return value :

let%node call_counter clk ~return:(a,b) =

a = counter (10 [@when clk]);

b = (counter 10) [@when clk]
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From the point of view of their clocks, the flows a and b are indistinguishable, each of these flows being
present only when the flow clk is true. However, their semantics differ : for flow b, the call (counter 10)
is executed at every instant (whatever the value of clk), and it is the return value of this call that is
subsampled by clk. In contrast, for flow a, the execution of (counter 10) is performed only when clk
is true. The counter is then incremented only when clk is true, and the execution frequency of counter
is potentially slower than that of call_counter. The table in Figure 3.5 illustrates the difference between
these two semantics.

instant 0 1 2 3 4 5 6 . . .
clk true false true true false false true . . .

counter (10 [@when clk]) 0 ⊥ 1 2 ⊥ ⊥ 3 . . .
(counter 10) [@when clk] 0 ⊥ 2 3 ⊥ ⊥ 6 . . .

Figure 3.5 – Difference between subsampling the parameters and subsampling the return
value.

Subsampling the parameters of a node therefore makes it possible to slow down the call frequency of
this node, and thus to make its internal state evolve more slowly. Such behavior will be referred to in this
thesis as conditional application.

A classic example of using conditional application is the watch example [Pla89]. In this example, the
different calls to counter are conditioned by clocks running at increasingly slower frequencies, allowing
one to simulate the computation of hours, minutes, and seconds 5 :

let%node watch (sec) ~return:(hour,min,h,m,s) =

s = counter (60 [@when sec]);

min = (s = 60);

m = counter (60 [@when min]);

hour = (m = 60);

h = counter (24 [@when hour])

Each call to counter is executed at a distinct frequency :
— The flow sec is incremented each time its clock sec is true.
— The flow min is incremented each time min is true (60 times more slowly than sec).
— The flow hour is incremented each time hour is true (60 times more slowly than min).

The notion of conditional application must be distinguished from that of conditional activation, used for
example in the Scade language (where it is implemented by the operator condact in versions prior to
Scade 6, and then by the construction activate/every [Dor08]). Conditional activation corresponds to a
conditional application of a node combined with a projection : if the clock of the conditional application
is false, then the associated flow retains the value calculated the last time its clock was true (and if it has
never yet been true, the flow has a default value explicitly provided by the programmer).

5. The reason for the presence of the clocks h and m in the output tuple of the node will be explained when we discuss clock
typing in Section 3.1.3.
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This mechanism of conditional activation can be implemented in OCaLustre by combining conditional
application, the merge operator, and the delay operator. For example, the following node performs the
conditional activation of a call to the node counter :

let%node condact_counter (c) ~return:(x) =

x = merge c (counter (10 [@when c])) ((0 ≫ x) [@whennot c])

Determining the application condition

The condition governing the execution of a node call depends on the clock of its parameters. Thus,
the following equation triggers the execution of counter 60 only when sec is true :

s = counter (60 [@when sec])

However, when a node has several parameters, the question arises as to under which condition a call
should be executed. Indeed, this condition is not limited to requiring that all the parameters of the call
be present. For example, let us start by defining a node swap_merge that merges two flows (x and y) on
complementary clocks (c and not c), using the merge operator with its parameters in reverse order :

let%node swap_merge (x,y,c) ~return:z =

z = merge c x y

And now consider the following equation :

m = swap_merge (x [@when c], y [@whennot c], c)

The parameters of the call to swap_merge can never all be present at the same instant, since x and y are
clocked by complementary clocks (when x is present, y is absent, and vice versa). Requiring the presence
of all parameters to condition the call would therefore be too restrictive. In reality, the activation of a
node occurs only when certain parameters are present : namely, those that, in the context of the called
node, are on the base clock (the fastest one). Since the base clock of a node is the fastest clock of that node,
the presence of the parameters on this clock then serves as the guard for the execution of that node. For
example, the single parameter n of the node counter is on the base clock. It is thus the presence of this
parameter that conditions the call to counter.

In the node swap_merge, it is the last parameter that lies on the base clock of the node. The flow c
must therefore be present for the call swap_merge (x,y,c) to be executed.

This semantics, similar to that of Heptagon, is slightly more flexible than that of Lustre : in Lustre,
the first parameter must be on the base clock, and the other parameters may potentially be on slower
clocks 6. When calling a node, the presence or absence of the first parameter is then checked to condition
its execution.

6. The node swap_mergewould therefore, in Lustre, have c as its first parameter.
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In the following section, we present a typing discipline that models the system of synchronous clocks.
This system of synchronous clocks, whose consistency can be verified at compile-time for an OCaLustre
program, governs the well-clockedness of programs in this language.
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3.1.3 Clock Typing of Programs

In an OCaLustre program, each expression has a clock defined either explicitly (through the use of the
annotations @when and @whennot), or implicitly (such as the base clock of the node, or a clock resulting
from the composition of two sub-sampled nodes). Just like the data types of OCaLustre expressions,
the information concerning the clocks of each flow is entirely deducible at compile time. Consequently,
the synchronous clocks of OCaLustre can be represented by a type system, statically assigning to each
expression of the language a clock type. This system is then associated with a set of rules representing the
consistency of a program’s clocking. Thus, a well-clocked program corresponds to a program whose clock
types respect the rules of this system, and to say that a program is well-clocked amounts to saying that
no access to absent values is possible during a synchronous instant, regardless of the values of the flows
manipulated by the program. This section introduces the notion of synchronous clock typing through
several examples that highlight its specificity, while the formal description of this type system will be
presented in the following section.

A clock type is associated with a grammar, presented in Figure 3.6. This grammar makes it possible
to represent the base clock of a node, or clocks corresponding to sub-samplings of values :

ck ::= clock
| • base clock
| ck on x positive subsampling
| ck onnot x negative subsampling
| ck × ck′ tuple
| ck→ ck′ function

Figure 3.6 – Clock types in OCaLustre

— A flow that is not sampled by any clock within a node is considered to be on the node’s base
clock. Following the formalism adopted for the Heptagon language [Gér13], the base clock type
is denoted by the following symbol : • .

— A flow positively clocked by a flow x (itself of type ck) has the clock type ck on x.
— A flow negatively clocked by a flow x′ (itself of type ck′) has the clock type ck′ onnot x′.
— An n-tuple of flows corresponds to an n-tuple of clocks.
— An instance of a node has a functional type of the form input clocks→ output clocks.

The signature of a node is associated with a type scheme (denoted ω), that is, a type in which variables
may be globally quantified (as defined by Damas and Milner in [DM82]), in the same way as in the work
of Colaço and Pouzet [CP03]. Similar to the classical data typing described in the previous section, the
clock type of a node is an arrow type, where the left-hand side corresponds to the clock type of its input
flows, and the right-hand side to the clock type of its output flows. The signature is annotated with the
names of the inputs x⃗ and outputs y⃗ of the corresponding node. The associated type scheme is quantified
by the base clock of the node :

ω ::= ∀ • . (x⃗ : ck)→ (y⃗ : ck′)

For example, the node sampler sub-samples its first parameter with its second parameter :
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let%node sampler (x,c) ~return:y =

y = x [@when c]

Since in the body of this node there is no information indicating that the parameters x or c are sub-
sampled by a slower clock than the base one, these parameters are considered to be clocked by the node’s
base clock. The output value, however, is explicitly conditioned on the presence of c.

The signature of sampler is therefore :

∀ • . ((x : •) × (c : •))→ (y : • on c).

It should be noted that the name c in the output’s clock type does not mean that the parameter c is
itself a type, but rather that the flow c is a Boolean value that sub-samples the flow y. In what follows,
we will call such variable names that appear in the type of a node « supports ».

The operator merge combines flows whose clock types are complementary : (ck on x) and (ck onnot x).
The resulting value is clocked by the clock of x, since the merge operator in some sense allows one to
« climb back up » one level of clock. For example, let us consider the following example, which defines a
node that applies the merge operator to its input parameters :

let%node merger (c,a,b) ~return:d =

d = merge c a b

The flow c is on the node’s base clock (•). The flows a and b must be on two complementary clocks,
clocked (the first positively and the second negatively) by c. The node merger therefore has the following
signature :

∀ • . ((c : •) × (a : • on c) × (b : • onnot c))→ (d : •)

In OCaLustre, if an output flow is locally sub-sampled by a clock defined in the body of a node, then
it is mandatory that its clock is also returned by the corresponding node. For example, the following
node calls the node sampler, and returns the flow v sub-sampled with its clock c :

let%node sampler2 (u) ~return:(v,c) =

v = sampler (u,c);

c = (true ≫ (false ≫ c))

The signature of this node is therefore ∀ • . (u : •)→ ((v : • on c) × (c : •)). This constraint ensures the
consistency of a program’s clocking : indeed, the use of a flow clocked by a clock whose own clock type
would be unknown (since it is defined locally within a node and therefore inaccessible from the outside)
leads to incomplete information regarding the presence conditions of this flow.
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For example, let us suppose that the definition of the following node were allowed :

let%node sampler_wrong (u) ~return:(v) =

v = sampler (u,c);

c = (true ≫ (false ≫ c))

The signature of sampler_wrong would therefore be ∀ • . (u : •)→ (v : • on c). But since the value of
c is known only locally within this node, the clocking information for v is incomplete from the point of
view of any node that calls sampler_wrong : this is a case where the local variable c escapes its scope. For
example, in the following code fragment, the variable that conditions the presence of a_sampled, which
is supposed to be passed as the first parameter of the merge operator in the definition of the flow b, is
inaccessible since it is local to sampler_wrong :

let%node call_sampler_wrong (a) ~return:(b) =

a_sampled = sampler_wrong (a);

b = merge XX a_sampled 32 (* issue: XX est unknown *)

Node Calls and Substitution of the Base Clock

The clock typing of node calls has a semantics similar to the typing of function application in a
programming language that implements a polymorphic type system : the base clock (•) then plays the
role of a type variable, and is therefore instantiated for each call.

In the classical type system of such a programming language (for example that of OCaml), if a function
f has the type scheme ∀α.α → α, then in the application f 2 the type variable α is instantiated with the
type int. The type of f in this context is therefore int→ int (and the result of the application is then of
type int).

Similarly, if we define the following node in OCaLustre :

let%node plus_one x ~return:y =

y = (x + 1)

Then, the signature of this node is ∀ • . (x : •)→ (y : •), and the base clock (•) can be substituted by a
slower clock during its instantiation. For example, let us consider the following equation :

y = plus_one (42 [@when c])

Since the expression 42 [@when c] has the clock type (• on c), then, after instantiation of the base
clock, the clock type of plus_one in this context will be the following :

(• → •) [• := • on c] = (• on c)→ (• on c)

The flow ywill therefore have the clock type of the result of the call : (• on c).
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Node Calls and Substitution of Variable Names

A particular feature of the type system for synchronous clocks is that certain clock types contain
variable names (for example the variable c in the type (• on c)). These names, which we will call supports,
correspond to the formal names of the flows used as clocks in the equations.

Of course, the supports appearing in node signatures may differ from the actual names of the argu-
ments in a call. For example, let us consider the signature of the node sampler :

∀ • . ((x : •) × (c : •))→ (y : • on c)

The output flow of the node sampler has the clock type (• on c), with c being the support of its clock
(corresponding to the second parameter of sampler). However, in the following example the name of the
second argument of the call to sampler is not c, but d :

let%node call_sampler (d) ~return:w =

w = sampler(8,d)

It would therefore be incorrect to assign to w the clock type (• on c), since the flow c is undefined in the
body of this node. This difference between the formal parameter names of a node and the actual names of
its arguments makes it necessary to substitute the supports with the actual names of the corresponding
variables.

Thus, in the previous example, the type of this instance of sampler becomes :

((• × •)→ (• on c))[c := d] = (• × •)→ (• on d)

and the clock type of w is therefore (• on d). Consequently, the signature of the node call_sampler is :

∀ • . (d : •)→ (w : • on d)

Finally, let us consider the following example, which combines the substitution of the base clock and
the substitution of supports :

let%node call_sampler_slower (c,e) ~return:w =

d = c [@when e];

w = sampler(8 [@when e],d)

The parameters of the call to sampler are each sub-sampled by e, so the base clock of this call has the
type (• on e). Moreover, the name of the second argument of this call is d ; consequently, the type assigned
to sampler in the equation w is then :

((• × •)→ (• on c)) [c := d] [• := • on e] = ((• on e) × (• on e))→ ((• on e) on d)

The node call_sampler_slower therefore has the following signature :

∀ • . (d : •) × (e : •)→ (w : (• on e) on d)
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3.2 Specification of the OCaLustre Language Formalized with Ott and Coq

This section is devoted to the description of a formal specification for the OCaLustre language. In
particular, we detail rules relating to the semantics and typing of an OCaLustre program. These various
rules are expressed using an intermediate representation of an OCaLustre program, called the normal form.
Moreover, the structure of an OCaLustre program is organized as a header containing OCaml definitions
(of types or functions), followed by a list of node definitions. The OCaml header (which is unrestricted)
will not be formalized in this manuscript, and the normal form will only concern synchronous nodes and
the equations they contain.

The grammar adopted, as well as each of the inference rules described in this section, have been
formalized with the Ott tool [SNO+10]. This tool is intended for the definition of grammars and evaluation
rules for programming languages, and is capable of extracting from this definition files readable by
several languages and proof assistants. Thus, the formal specification of the type systems and semantics
described in this section is based on the Coq proof assistant [Tea19]. The display of the various inductive
rules in this section is generated from the extraction of Ott into LATEX.

3.2.1 Representation of a Synchronous Program in Normal Form

The various operations and analyses that we will formally describe in the remainder of this manuscript
rely on a structured representation of programs. This representation, the normal form, results from a
procedure carried out by the OCaLustre compiler, which applies several static transformations intended to
homogenize the structure of programs in order to simplify their subsequent analyses and transformations.
In particular, the normal form makes it possible to extract sub-expressions that induce the use of registers
during the compilation of a program. We will describe in detail the process of converting a program into
normal form (or normalization) when we present the different stages of OCaLustre program compilation
in Chapter 4.

Grammar

For the sake of consistency with related work, the grammar associated with the normal form represen-
tation of OCaLustre programs is inspired by the formalism introduced in [BDPR17] and the definition of
the CoreDF language syntax 7. An OCaLustre program is therefore first converted from an abstract syntax
tree (AST), resulting from the parsing of the source program, into a normalized AST, whose components
are derived from the following grammar :

— A synchronous program in OCaLustre corresponds to a list of node definitions :

program, ⃗nodes ::= programme
| ∅ programme vide
| node; ; ⃗nodes liste de nœuds

7. Unlike CoreDF, our representation supports the definition of nodes with multiple output values.
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— A node is defined by its name f , a list of variable names x⃗ 8 representing the input flow(s), a
list of names y⃗ corresponding to the output flows, and a (non-empty) list of equations ⃗eqn that
constitutes its body :

node ::= définition de nœud
| node f (x⃗) return (y⃗) = ⃗eqn

x⃗, y⃗ ::= noms de variables
| () liste vide
| y unique variable
| y, y⃗ multiples variables

⃗eqn ::= liste d’équations
| [eqn] unique
| eqn; ⃗eqn multiples

— An equation, of the form name(s) = expression, corresponds to the definition of one or more flow
variables. These flows may correspond to a control expression ce, the use of the operator≫ (for
consistency with other synchronous languages, this operator will be represented as fby in normal
form), the application of a node f with as parameter a (non-empty) list of expressions e⃗, or the use
of the call operator to apply an OCaml function :

eqn ::= équation
| y = ce expression
| y = k fby e fby
| y⃗ = f (⃗e) application
| y = call f e0 e1 .. en−1 application d’une fonction OCaml

e⃗ ::= liste d’expressions
| [e] unique
| e, e⃗ multiples

— Control expressions correspond to the use of the conditional operator if − then − else, the merge
operator merge, or « simple » expressions e :

ce ::= expression de contrôle
| e expression
| merge x ce ce′ fusion
| if e then ce else ce′ alternative

8. Arrows placed above a given syntactic category will, throughout this manuscript, denote a list of elements of that category.



92 Chapitre 3. OCaLustre : Programmation synchrone en OCaml

— Finally, the « simple » expressions correspond to the value unit (represented by the standard
notation « () »), constants (k), variables (x), constructors of enumerated types (Xi), application of
the positive or negative sub-sampling operators (when and whennot), application of a unary
prefix arithmetic operator (□), as well as the application of a binary infix arithmetic or logical
operator (^) :

e ::= expression
| () unit
| k constante
| x variable
| Xi constructeur de type
| e^ e′ opération binaire
| □ e opération unaire
| e when x échantillonnage positif
| e whennot x échantillonnage négatif

k ::= constante
| int_literal entier
| f loat_literal flottant
| bool_literal booléen

^ ::= opérateur binaire
| ^int opérateur entier
| ^ f loat opérateur flottant
| ^comp opérateur de comparaison
| ^bool opérateur booléen

□ ::= opérateur unaire
| − opposée entière
| −. opposée flottante
| not négation booléenne

3.2.2 Typing and Clocking

The type system of a programming language is a set of rules that assign a type to the various constructs
of a program in that language. The types most commonly considered in computer programming concern
those that represent the nature of the data being manipulated : integers, booleans, floating-point numbers,
lists of integers, functions, object instances, and so on.

However, a type system can also define rules relating to other aspects of a program beyond the nature
of the computed values. For example, it is possible to design a type system that is not dedicated to
representing the nature of the values « carried » by different variables and expressions, but rather to the
properties emphasized in certain kinds of applications — such as the security level of different program
constructs [Wal00].
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The set of typing rules, which govern the consistency of a type system, makes it possible to distinguish
well-typed programs (which respect these rules) from programs whose typing is incorrect (for example,
those in which forbidden implicit type conversions are performed).

In this section, we present the typing of an OCaLustre program through the lens of two type systems
that provide very different kinds of information. The first type system we describe is a classical one, which
assigns to values or expressions of the language data types representing the nature of the information
being transmitted : flows of integers, flows of booleans, flows of floating-point numbers, and so on.
This type system relies on the underlying host language’s type system and therefore shares all its
characteristics : thus, in OCaLustre, data are, just as in OCaml, strongly typed, and their types are
statically inferred at program compilation.

The second type system we consider in this section is the type system of synchronous clocks. This
system, unlike the previous type system, does not represent the nature of the values manipulated by
the various components of a program, but rather the presence (or absence) of values. The typing of
synchronous clocks, like the typing of data in OCaLustre, is a strong static type system, with inference of
flow clocks at program compilation.

The advantage of implementing such systems, with this strong static typing constraint, is that a very
large number of potential bugsstemming from inconsistencies in the programmer’s writing of certain
expressions of the languagecan be detected at compile time, even before the program has been deployed
to the microcontroller. These type systems, each of which governs a distinct aspect of the consistency of
OCaLustre programs, thus contribute to the safety of OCaLustre programs.

3.2.3 Typing Rules of Programs

Like its target language OCaml, the OCaLustre language extension is a statically typed programming
language, implementing a mechanism of type inference at compilation. Each variable of an OCaLustre
program has a type whose nature can be determined at compile time. It should be noted, however, that
the type system of OCaLustre is monomorphic, unlike the polymorphic type system of OCaml.

Saying that a flow x ≡ (x1, x2, ..., xi, ...) is of type « flow of t » (simply written « t ») means that all the
elements of the sequence of values it corresponds to are of type t. Just like homogeneous lists in the OCaml
language, a flow cannot « carry » values whose type changes over time. Consequently, creating a flow
whose value could change type from one instant to the next, such as the flow (0, 2, 4, true, 10, 4.5, 14, . . . ),
is therefore impossible in OCaLustre.

The types manipulated in OCaLustre can be base types (int, bool, float), arrow types (the types of
nodes), enumerated types (represented by the set of their constructors Xi), or n-tuples of types (corres-
ponding to the type of a list of expressions) :

t ::= unit | int | bool | f loat | t→ t′ | {X1, . . . ,Xn} | t1 × ... × tn

From the normal form representation of OCaLustre programs, we then formally define the conditions
that govern the well-typing of a program.

Let Γ be a local typing environment, that is, a function which associates to each variable of an
OCaLustre node its type : for example, if the flow x is of type int, then Γ(x) = int. We write Γ ` e : t for
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the predicate (called a typing judgment) indicating that, in the typing environment Γ, the expression e has
type t.

We then define from such judgments inference rules representing the consistency of typing expressions
in OCaLustre. Such rules, of the form

P1 . . . Pn
Q

make it possible to establish that, from the premise conditions P1 to Pn, one can deduce the judgment Q.

Typing of expressions : Figure 3.7 presents the typing rules for OCaLustre expressions. For example,
the typing rule for the application of an integer arithmetic operator ^int (for instance, the operator +)
states that such an operation can only be performed between two integers, and the result is itself an
integer :

Γ ` e1 : int Γ ` e2 : int

Γ ` e1^int e2 : int

It should be noted here that, for the typing rule of comparison operators, it is assumed that no
comparison of values of functional type is carried out in an OCaLustre program. This is left to the
responsibility of the programmer, who must ensure not to perform such an operation 9. Since we rely
on the execution of the OCaml code generated by compiling OCaLustre, the comparison function is
polymorphic, and its use on values of functional types raises an exception. Any exception in an OCaLustre
program results in the termination of its execution.

Moreover, a judgment of the form t = {X1, . . . ,Xn}means that the type t has previously been defined
(in the OCaml header) as an enumerated type composed of the constructors X1 to Xn.

Finally, we distinguish the typing rules of a «simple» expression from those of a conditional expression
by annotating the symbol « turnstile » (`) in the case of rules concerning conditional expressions as follows :
`ce.

The rules concerning the typing of OCaLustre equations and nodes are given in Figure 3.8. In the
following, we review them in order to describe them in detail.

Typing of equations : Let G be a global typing environment that associates to each OCaml function and
each OCaLustre node its type (an « arrow » type of the form input type→ output type). An equation in the
body of an OCaLustre node corresponding to the application of another node y⃗ = f (⃗e) is well-typed if
and only if f has the signature of a type t1 → t2, the parameter e⃗ of the application is of type t1, and the
result y⃗ is of type t2 :

Γ ` y⃗ : t2 G(f ) = t1 → t2 Γ ` e⃗ : t1

G,Γ ` y⃗ = f (⃗e)

9. Just as the application of partial functions via call, or division by zero, are prohibited.
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Γ ` e : t

Γ ` () : unit Γ ` int_literal : int Γ ` bool_literal : bool Γ ` f loat_literal : f loat

Γ(x) = t
Γ ` x : t

t = {X1, ...,Xn}
Γ ` Xi : t

Γ ` e1 : int Γ ` e2 : int
Γ ` e1^int e2 : int

Γ ` e1 : bool Γ ` e2 : bool
Γ ` e1^bool e2 : bool

Γ ` e1 : f loat Γ ` e2 : f loat
Γ ` e1^ f loat e2 : f loat

Γ ` e1 : t Γ ` e2 : t
Γ ` e1^comp e2 : bool

Γ ` e : int
Γ ` − e : int

Γ ` e : f loat
Γ ` −. e : f loat

Γ ` e : bool
Γ ` not e : bool

Γ ` e : t Γ(x) = bool
Γ ` e when x : t

Γ ` e : t Γ(x) = bool
Γ ` e whennot x : t

Γ ` e⃗ : t

Γ ` e : t
Γ ` [e] : t

Γ ` e : t Γ ` e⃗ : t′

Γ ` e, e⃗ : t × t′

Γ `ce ce : t

Γ ` e : t
Γ `ce e : t

Γ ` e1 : bool Γ `ce ce2 : t Γ `ce ce3 : t
Γ `ce if e1 then ce2 else ce3 : t

Γ(x) = bool Γ `ce ce1 : t Γ `ce ce2 : t
Γ `ce merge x ce1 ce2 : t

Figure 3.7 – Typing rules for OCaLustre expressions
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Γ ` y⃗ : t

Γ ` () : unit
Γ(y) = t
Γ ` y : t

Γ ` y : t Γ ` y⃗ : t′

Γ ` y, y⃗ : t × t′

G,Γ ` eqn

Γ ` y : t Γ `ce ce : t
G,Γ ` y = ce

Γ ` y : t Γ ` k : t Γ ` e : t
G,Γ ` y = k fby e

Γ ` y⃗ : t2 G(f ) = t1 → t2 Γ ` e⃗ : t1

G,Γ ` y⃗ = f (⃗e)

Γ ` y : tn G(f) = t0 → t1 → ... → tn−1 → tn Γ ` e0 : t0 Γ ` e1 : t1 ... Γ ` en−1 : tn−1

G,Γ ` y = call f e0 e1 ... en−1

G,Γ ` ⃗eqn

G,Γ ` eqn
G,Γ ` [eqn]

G,Γ ` eqn G,Γ ` ⃗eqn

G,Γ ` eqn; ⃗eqn

G ` node : t

G,Γ ` ⃗eqn Γ ` x⃗ : t1 Γ ` y⃗ : t2

G ` node f (x⃗) return (y⃗) = ⃗eqn : t1 → t2

G ` program

G ` ∅
G ` node f (x⃗) return (y⃗) = ⃗eqn : t1 → t2 (f : t1 → t2) ] G ` ⃗nodes

G ` node f (x⃗) return (y⃗) = ⃗eqn; ; ⃗nodes

Figure 3.8 – Typing rules for equations and nodes

An equation corresponding to the application of the « followed-by » operator is well-typed provided
that the constant on the left of the operator≫ and the expression on the right of it are of the same type,
and that the variable on the left of the equality operator is also of the same type :

Γ ` y : t Γ ` k : t Γ ` e : t

G,Γ ` y = k fby e

The application of an OCaml function is of type tn if and only if the OCaml function itself is of type

t0 → · · · → tn−1 → tn and its successive parameters are of type t0 through tn−1 :

Γ ` y : tn G(f) = t0 → t1 → ... → tn−1 → tn Γ ` e0 : t0 Γ ` e1 : t1 ... Γ ` en−1 : tn−1

G,Γ ` y = call f e0 e1 ... en−1

It should be noted, however, that this rule induces a slight semantic shift : we move from flows to
OCaml functions, which are supposed to be able to manipulate only « standard » values. For example, a
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value of type « flow of int » in OCaLustre is seen by the called OCaml function as a value of type int.
This distinction poses no problem, however, since at each instant of the program a flow has only a single
value (a « flow of int » is therefore reduced to a simple int) 10. Formally, the operator call can be seen
as a map function that « lifts » an OCaml function so that it can be applied to flows :

call f e0 e1 . . . en−1 ≡ (map f ) e0 e1 . . . en−1

Any other equation y = ce is well-typed if the expression ce associated with it is well-typed and if the
variable y has the same type in Γ :

Γ ` y : t Γ `ce ce : t

G,Γ ` y = ce

A list of equations (the body of a node) is well-typed as soon as all the equations it contains are
well-typed :

G,Γ ` eqn

G,Γ ` [eqn]

G,Γ ` eqn G,Γ ` ⃗eqn

G,Γ ` eqn; ⃗eqn

Typing of a node and of a synchronous program : The type of an OCaLustre node is similar to the type
of a function in OCaml. It is an arrow type t1 → t2, with t1 being the type of the flows that can be passed
to it as inputs, and t2 the type of the values it computes as outputs :

G,Γ ` ⃗eqn Γ ` x⃗ : t1 Γ ` y⃗ : t2

G ` node f (x⃗) return (y⃗) = ⃗eqn : t1 → t2

Finally, a synchronous program (i.e. a list of nodes) is well-typed provided that each node it contains
is well-typed :

G ` ∅
G ` node f (x⃗) return (y⃗) = ⃗eqn : t1 → t2 (f : t1 → t2) ] G ` ⃗nodes

G ` node f (x⃗) return (y⃗) = ⃗eqn; ; ⃗nodes

The typing judgment of a synchronous program is initially invoked with the typing environment
corresponding to the OCaml functions previously defined in the header of the program. The typing
environments for OCaml functions and for nodes are therefore shared, and we will assume that the
namespaces between functions and nodes are distinct, so that there are no name conflicts (which would
result in shadowing).

The typing rules of the OCaLustre extension are sufficiently close to the typing rules of OCaml
that a well-typed OCaLustre program remains well-typed after its translation into OCaml, and that the
generation of an ill-typed OCaml program indicates that the original OCaLustre program is itself ill-
typed. Consequently, thanks to the typing correctness with respect to the translation into OCaml (the proof of
which we will present in Section 5.1), the rules stated in this section do not need to be explicitly checked

10. This phenomenon also appears when « wiring » an OCaLustre program to functions that compute the inputs and outputs
of a synchronous instant.
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by the OCaLustre compiler in order to maintain program safety. Indeed, we take advantage of the target
language, whose compiler already performs static type checking and type inference. In our case, this
analysis is therefore carried out after translating OCaLustre code into standard OCaml code. The OCaml
compiler is then able to point out typing errors in programs, including those originating from OCaLustre
code.

Moreover, since OCaLustre is built with tools that are part of the OCaml program compilation
ecosystem, it is fully compatible with other powerful static analysis tools, such as Merlin [BRS18],
which provides numerous features to simplify the development of OCaml programs (such as a context-
sensitive auto-completion mechanism, or direct access to typing information) by integrating into various
text editors (Vim, Emacs, Atom, . . . ). Such compatibility allows the OCaLustre user to receive immediate
and precise feedback on the location of errors related (among other things) to typing consistency and
program scheduling, directly within their preferred text editor.

3.2.4 Rules for Well-Clocked Programs

The consistency of the synchronous clock type system governs the well-clocking of an OCaLustre
program. This well-clocking is defined by a set of typing rules whose satisfaction ensures the clocking
safety of a program.

Just as with the formalization of OCaLustre program typing, we define a clocking judgment as a
predicate of the form H, C ` eqn, meaning that in a global clocking environment H (which associates
each node name with its clock) and a local clocking environment C (which associates a clock with each
variable name of a node), an equation eqn is well-clocked. Similarly, a judgment C ` e : ck states that, in
the typing environment C, the expression e has clock type ck.

From such typing judgments, we then describe inference rules that formally establish the necessary
conditions for the well-clocking of programs, nodes, equations, and expressions. These rules are derived
from a type system that considers clocks as abstract data types [CP03], implemented in the Lucid Synchrone
language. Our solution, less expressive because it does not allow the existence of multiple clock type
variables within a node but only a single one (the base clock •), nevertheless greatly simplifies the model
of separate compilation of nodes, without significantly limiting the expressive power of the language. The
type system of OCaLustre is therefore closer to the type system of the synchronous language Heptagon,
halfway between the clock system of Lustre and that of Lucid Synchrone.

The clocking rules for OCaLustre expressions are presented in Figure 3.9, and those concerning
equations and nodes are given in Figure 3.10. In the following, we describe the main rules that govern
the well-clocking of an OCaLustre program.

In OCaLustre, a constant is always well-clocked ; it is considered well-typed regardless of the clock
type :

C ` k : ck

The clock type of a variable comes from the typing environment :

C(x) = ck

C ` x : ck
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C ` e : ck

C ` () : ck C ` k : ck C ` Xi : ck
C(x) = ck
C ` x : ck

C ` e : ck
C ` □ e : ck

C ` e : ck C ` e′ : ck
C ` e^ e′ : ck

C ` e : ck C ` x : ck
C ` e when x : ck on x

C ` e : ck C ` x : ck
C ` e whennot x : ck onnot x

C ` e⃗ : ck

C ` e : ck
C ` [e] : ck

C ` e : ck C ` e⃗ : ck′

C ` e, e⃗ : ck × ck′

C `ce ce : ck

C ` e : ck
C `ce e : ck

C ` e : ck C `ce ce : ck C `ce ce′ : ck
C `ce if e then ce else ce′ : ck

C ` x : ck C `ce ce : ck on x C `ce ce′ : ck onnot x
C `ce merge x ce ce′ : ck

Figure 3.9 – Clocking rules for expressions

The use of any operator requires its operands to have the same clock type. For example, the following
rule, which defines the well-clocking of an arbitrary arithmetic or logical operator (^), states that in the
clocking environment C, if each operand of the operator ^ is clocked by the clock ck, then its result is
itself clocked by ck :

C ` e : ck C ` e′ : ck

C ` e^ e′ : ck

The use of the merge operator requires its second and third parameters to be clocked positively and
negatively, respectively, by its first parameter. The result is on the clock of the first parameter :

C ` x : ck C `ce ce : ck on x C `ce ce′ : ck onnot x

C `ce merge x ce ce′ : ck

The application of a node y⃗ = f (⃗e) is well-clocked provided that the clock type ck1 → ck2 is an instance
of the signature ω of f (i.e. a clock type in which the substitutions required for conditional application
and for the consistency of support names have been carried out), that the parameters e⃗ of the application
are of clock type ck1, and that the result has clock type c⃗k2 :

H(f ) = ω ck′1 → ck′2 = inst(ω) C ` e⃗ : ck′1 C ` y⃗ : ck′2
H, C ` y⃗ = f (⃗e)
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C ` y⃗ : ck

C ` () : •
C(y) = ck
C ` y : ck

C ` y : ck C ` y⃗ : ck′

C ` y, y⃗ : ck × ck′

H, C ` eqn

C ` y : ck C `ce ce : ck
H, C ` y = ce

C ` y : ck C ` e0 : ck C ` e1 : ck ... C ` en−1 : ck
H, C ` y = call f e0 e1 ... en−1

C ` y : ck C ` e : ck
H, C ` y = k fby e

H(f ) = ω ck′1 → ck′2 = inst(ω) C ` e⃗ : ck′1 C ` y⃗ : ck′2
H, C ` y⃗ = f (⃗e)

H, C ` ⃗eqn

H, C ` eqn
H, C ` [eqn]

H, C ` eqn H, C ` ⃗eqn

H, C ` eqn; ⃗eqn

H ` node : ω

H, C ` ⃗eqn C ` x⃗ : ck C ` y⃗ : ck′

H ` node f (x⃗) return (y⃗) = ⃗eqn : ∀ • . (x⃗ : ck)→ (y⃗′ : ck′)

H ` program

∅ ` ∅
H ` node f (x⃗) return (y⃗) = ⃗eqn : ω (f : ω) ]H ` ⃗nodes

H ` node f (x⃗) return (y⃗) = ⃗eqn; ; ⃗nodes

Figure 3.10 – Clocking rules for equations and nodes

The application of an OCaml function is well-clocked if all of its parameters have the same clock type.
The clock of the result is also identical to the clock of the parameters :

C ` y : ck C ` e0 : ck C ` e1 : ck ... C ` en−1 : ck

H, C ` y = call f e0 e1 ... en−1

A node is well-clocked provided that the equations it contains, as well as its input and output
parameters, are all well-clocked. Its signature then corresponds to a type scheme quantified by the base
clock of the node. It is an « arrow » type from the node’s input parameters to its output parameters, all
annotated with their clock types :

H, C ` ⃗eqn C ` x⃗ : ck C ` y⃗ : ck′

H ` node f (x⃗) return (y⃗) = ⃗eqn : ∀ • . (x⃗ : ck)→ (y⃗′ : ck′)

Finally, a program is well-clocked if all of its nodes are well-clocked :

∅ ` ∅
H ` node f (x⃗) return (y⃗) = ⃗eqn : ω (f : ω) ]H ` ⃗nodes

H ` node f (x⃗) return (y⃗) = ⃗eqn; ; ⃗nodes



3.2. Specification of the OCaLustre Language Formalized with Ott and Coq 101

A program that respects these various typing rules is guaranteed not to access, during its execution,
values of absent flows (⊥), and thus not to exhibit unpredictable or erroneous behavior. In Section 5.2,
we will detail the process of automatically verifying these various rules at the time of compiling an
OCaLustre program.

3.2.5 Operational Semantics

The operational semantics of the OCaLustre language is similar to that of the Lustre language as
defined in [CPHP87]. However, this reference semantics assumes the inlining of nodes, whereas we
will see in Chapter 4 that the OCaLustre compiler follows a model of separate compilation. Although
this compilation model does not accept certain synchronous programs that are valid in Lustre (we
will address this limitation in Section 4.2.2), those it does accept do indeed conform to the semantics
described in this section. This semantics is presented briefly, in the form of inference rules applied to a
simplified representation of the normal form of OCaLustre programs. In this simplified representation,
a program is a list of all the equations evaluated during a single execution instant. This amounts to
saying that all node calls are replaced by their bodies, and that the integration (or inlining) of node calls
is therefore performed, as in the Lustre compilation model. Furthermore, the equations of the program
are represented annotated with their respective clocks, placed below the equality symbol. In addition,
every constant is also annotated with its clock, placed as a superscript.

Let σ be the memory associated with an OCaLustre program, that is, a function that associates to each
variable name a value at each execution instant. A memory σ is said to be compatible with the system of
equations of a program if, for every equation x = e in the system, the value of the right-hand side of the
equation is identical to σ(x) whenever the clock of x is true (otherwise, σ(x) = ⊥ regardless of the value of
e). In other words, a memory is compatible with the system of equations of the program if it is a solution
to the latter.

We then define the following judgments :
— σ ` exp : v means that, in a synchronous instant, the expression exp is reduced to the value v when

evaluated in the context of the memory σ.
— eqn σ−→ eqn′ means that the equation eqn is compatible with the memory σ, and that it will be

replaced by the expression eqn′ for the execution of the next instant.
— ⃗eqn σ−→ ⃗eqn′ means that the list of equations ⃗eqn is compatible with the memory σ, and that it will

be replaced by the list of equations ⃗eqn′ for the execution of the next instant.
— Finally, h ` ⃗eqn : h′means that, given the history of inputs h of the program, the system of equations
⃗eqn of the program produces the history of outputs h′.

The full set of operational semantics rules of the language is described in Figure 3.11.

We describe here the main rules of the operational semantics :

— The value of a variable is extracted from the memory σ :

σ(x) = v

σ ` x : v

— If expression e1 is reduced to the value v1, and if expression e2 is reduced to the value v2, then
the application of a binary infix operator to these two expressions e1^ e2 is reduced to the value
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σ ` e : v

σ(ck) = true

σ ` ()ck : ()

σ(ck) , true

σ ` ()ck : ⊥
σ(ck) = true

σ ` kck : k

σ(ck) , true

σ ` kck : ⊥
σ(ck) = true

σ ` Xck
i : Xi

σ(ck) , true

σ ` Xck
i : ⊥

σ(x) = v
σ ` x : v

σ ` e : v
σ ` □ e : □ v

σ ` e1 : v1 σ ` e2 : v2

σ ` e1^ e2 : v1 ^ v2

σ(x) = true σ ` e : v
σ ` e when x : v

σ(x) , true
σ ` e when x : ⊥

σ(x) = f alse σ ` e : v
σ ` e whennot x : v

σ(x) , f alse
σ ` e whennot x : ⊥

σ ` ce : v

σ ` e1 : true σ ` ce2 : v σ ` ce3 : w
σ ` if e1 then ce2 else ce3 : v

σ ` e1 : f alse σ ` ce2 : v σ ` ce3 : w
σ ` if e1 then ce2 else ce3 : w

σ ` x : true σ ` ce1 : v σ ` ce2 : ⊥
σ ` merge x ce1 ce2 : v

σ ` x : f alse σ ` ce1 : ⊥ σ ` ce2 : w
σ ` merge x ce1 ce2 : w

eqn σ−→ eqn′

σ(ck) = true σ(y) = k σ ` e : k′

y =
ck

k fby e σ−→ y =
ck

k′ fby e

σ(ck) , true σ(y) = ⊥
y =

ck
k fby e σ−→ y =

ck
k fby e

σ(ck) = true σ(y) = w σ ` e0 : v0 σ ` e1 : v1 ... σ ` en−1 : vn−1 (f v0 v1 ... vn−1) ⇓ w

y =
ck

call f e0 e1 ... en−1
σ−→ y =

ck
call f e0 e1 ... en−1

σ(ck) , true σ(y) = ⊥
y =

ck
call f e0 e1 ... en−1

σ−→ y =
ck

call f e0 e1 ... en−1

σ(ck) = true σ(y) = v σ ` ce : v

y =
ck

ce σ−→ y =
ck

ce

σ(ck) , true σ(y) = ⊥
y =

ck
ce σ−→ y =

ck
ce

⃗eqn σ−→ ⃗eqn′

eqn σ−→ eqn′ ⃗eqn σ−→ ⃗eqn′

eqn; ⃗eqn σ−→ eqn′; ⃗eqn′

h ` ⃗eqn : h′

⃗eqn σ−→ ⃗eqn′ h ` ⃗eqn′ : h′

σ[input].h ` ⃗eqn : σ[output].h′

Figure 3.11 – Operational semantics of OCaLustre



3.2. Specification of the OCaLustre Language Formalized with Ott and Coq 103

v1^ v2 :
σ ` e1 : v1 σ ` e2 : v2

σ ` e1^ e2 : v1 ^ v2

— The result of the merge (merge) of two flows corresponds to the value of its second (resp. third)
parameter when its first parameter is true (resp. false) :

σ ` x : true σ ` ce1 : v σ ` ce2 : ⊥
σ ` merge x ce1 ce2 : v

σ ` x : f alse σ ` ce1 : ⊥ σ ` ce2 : w

σ ` merge x ce1 ce2 : w

— A flow defined by an equation has no value (⊥) if its clock is false (or if it is itself absent) :

σ(ck) , true σ(y) = ⊥

y =
ck

ce σ−→ y =
ck

ce

— The evaluation of an equation containing the fby operator implies a transformation of the equa-
tion’s form for the next instant. The value on the left of the operator then corresponds to the value
computed at the previous instant :

σ(ck) = true σ(y) = k σ ` e : k′

y =
ck

k fby e σ−→ y =
ck

k′ fby e

— Evaluating an OCaml function call (designated by call) amounts to evaluating all the parameters
of the call (e0 through en) in OCaLustre, then applying the function to the computed values. The
result w of this application, computed according to the semantics of OCaml 11, corresponds to the
value of the resulting flow y.

σ(ck) = true σ(y) = w σ ` e0 : v0 σ ` e1 : v1 ... σ ` en−1 : vn−1 (f v0 v1 ... vn−1) ⇓ w

y =
ck

call f e0 e1 ... en−1
σ−→ y =

ck
call f e0 e1 ... en−1

— Finally, evaluating a program amounts to evaluating the equations it contains by computing
a solution to the system of equations for given input values. It then produces a set of values
corresponding to the program’s output variables, and recursively induces the evaluation of new
outputs from the inputs of the next instant.

⃗eqn σ−→ ⃗eqn′ h ` ⃗eqn′ : h′

σ[input].h ` ⃗eqn : σ[output].h′

To illustrate these various semantic rules, Figure 3.12 shows a derivation of the evaluation of the
equation y =

•
2 fby (y + 1) : at the next execution instant, this equation becomes y =

•
3 fby (y + 1).

A memory is consistent from the clocking point of view if and only if it associates⊥with every variable
whose value is not computed (i.e. if its clock is false or if this clock itself is not computed). An expected
property of this semantics is that if the program is well-scheduled, then a memory compatible with this
program is necessarily consistent (therefore ⊥ is never consulted during the evaluation of expressions in

11. The notation e ⇓ w indicates that in the semantics of OCaml the expression e evaluates to the value v
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σ(•) = true σ(y) = 2

σ(y) = 2
σ ` y : 2 σ ` 1 : 1
σ ` (y + 1) : 3

y =
•

2 fby (y + 1) σ−→ y =
•

3 fby (y + 1)

Figure 3.12 – Derivation of the evaluation of an OCaLustre flow

a well-scheduled program). The proof of this property, which establishes the link between typing and
semantics, is however deferred to future work, which could draw on techniques similar to those used
in related work on the certification of Lustre compilation [Aug13, BBD+17]. On the other hand, with
the semantics described in this section there may exist multiple solutions to the system of equations
of a synchronous instant. Additional static constraints are necessary to guarantee the existence of a
unique solution, and to allow the sequential computation of this solution. In the next chapter, we will
detail the nature of these causality and schedulability properties, which form the basis of the single-loop
compilation method.

Chapter Conclusion

This chapter has provided a complete overview of the constructs and principles offered by our
synchronous extension of the OCaml language. We have addressed many formal aspects, in particular
the typing properties inherent to the use of this programming paradigm. OCaLustre is intended to be
used together with the OMicroB virtual machine presented in the previous chapter, and it is therefore
essential that it be fully compatible with the OMicroB bytecode interpreter. This is also the case for
Lucid Synchrone, but its high expressiveness (higher-order features, multiple base clocks for the same
node, automata, . . . ) produces programs that consume more resources, which are not compatible with
the hardware limitations we consider. On this subject, we will present in Chapter 7 some comparative
elements that illustrate how our solution helps to limit the memory footprint of synchronous programs,
since the OCaLustre compilation model is simplified by its more restricted expressiveness.

In the following chapter, we then present the steps that allow the compilation of an OCaLustre
program into a standard sequential OCaml program, fully compatible with OMicroB and the targeted
devices, but also with any OCaml compiler.
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4 Compilation of OCaLustre Programs

OCaLustre is an extension of the OCaml language, and as such we use a set of software tools that
enable the definition of such extensions. In particular, we make use of PPX [⚓3], a tool of the standard
OCaml compiler that allows the definition of syntactic extensions through the use of specific annotations
in the program’s source code. In our case, we annotate what is initially considered by the OCaml compiler
to be a function definition with the keyword « node » in order to construct an OCaLustre node (hence the
syntax of annotations of the form let%node).

The advantage of using PPX is to delegate to the standard OCaml compiler 1 the task of performing
the necessary steps of parsing the source program and constructing an internal representation within the
compiler. The OCaLustre compiler can then plug directly into this internal representation (an abstract
syntax tree — « AST » — in OCaml), apply several transformations to it, and then hand it back to the
standard compiler, which is then responsible for producing executable code. The OCaLustre compiler
can thus be regarded as a preprocessor, responsible for modifying the structure of the program’s AST
before it is further handled by the standard compiler.

In this chapter, we describe the steps required to compile an OCaLustre program, from its normaliza-
tion into normal form to the generation of a standard representation of an OCaml program. We follow a
process well-documented in the literature [Pla88, BCHP08], which has in the past been used to implement
compilers for synchronous languages comparable to OCaLustre.

Figure 4.1 schematically represents the compilation chain of an OCaLustre program. It consists of
four main steps :

— A first step of normalization transforms the program by restructuring its components in order to
simplify the static analyses applied during its compilation.

— A second step of scheduling consists in sorting the various equations that constitute the body of
an OCaLustre node so that their reading order corresponds to their declaration order during the
generation of OCaml code.

— The third compilation step consists in the inference of clock types for OCaLustre equations. This
step automatically annotates each equation of a program with its clock, following the clock typing
rules defined in Section 3.2.4.

— The final step of compiling an OCaLustre program consists in the translation of the annotated
OCaLustre program into a standard OCaml program, in the form of an AST understandable by
the compiler of the language. This AST is then processed by the latter and compiled (in the case
of a compilation into a bytecode file) into a file fully compatible with any OCaml virtual machine,
including OMicroB.

It should be noted that our decision to follow a model of separate compilation of OCaLustre nodes
(similar to the model of SCADE, as opposed to that of Lustre V4 [HR01], which performs inlining of
calls) is based on the desire to avoid code duplication when compiling multiple calls to the same node.

1. Whether it be ocamlc, the compiler that generates OCaml bytecode, or ocamlopt, the compiler that generates native code.
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source

OCaLustre
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AST 
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Figure 4.1 – Compilation chain of an OCaLustre program

Given the limited memory resources of a microcontroller, it is indeed important in our use case to reduce
the memory footprint of programs. We will see during the description of the scheduling process that
this decision has consequences for the static validation of certain programs, but this disadvantage seems
acceptable to us given the importance, in our work, of limiting the resource consumption of programs.

4.1 Normalization into Normal Form

The first step in compiling an OCaLustre program consists in transforming the nodes resulting from
the syntactic and lexical analysis of the source program into their representation in the normal form defined
in Section 3.2.1.

The main role of normalization, or conversion into normal form, is to extract, within the equations of
a node, the expressions that we call "side-effect expressions" in order to simulate, in the target language
(OCaml), the use of OCaLustre’s strict-evaluation conditional operator. This transformation thus makes
it possible to preserve the semantics of OCaLustre without having to define a special « if » operator
dedicated to the execution of OCaLustre nodes. Side-effect expressions are those that, during their
evaluation, affect the internal state of a node. In OCaLustre, there are three of them :

1. The shift operator≫ implicitly involves the manipulation of a register in the internal state of the
node in which it is used : the expression 0 ≫ e is therefore a side-effect expression that induces
both the computation of the value of the expression e at instant t, and the storage of this value in
the internal state of the node so that it can be accessed by the program at instant t + 1.

To ensure that this evaluation is not “frozen” in the case where this expression is nested within
the consequence or the alternative branch of a conditional, any sub-expression appearing in the
definition of a flow x that contains a≫ is extracted from the expression in which it was nested
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and moved into the definition of a new flow, named x_aux. In this way, the value of x_aux is
effectively computed at every execution instant of the program.

For example, the following non-normalized node :

let%node ex_norm (b) ~return:(x) =

x = if b then (0 ≫ (x + 1)) else (0 ≫ x)

is translated into normal form as the following semantically equivalent representation :

node ex_norm b return x =
x_aux1 = 0 fby (x + 1) ;
x_aux2 = 0 fby x ;
x = if b then x_aux1 else x_aux2

Thus, the computation of 0 ≫ (x + 1) and of 0 ≫ x is indeed carried out at each execution
instant (whatever the value of b), without having to distinguish between the lazy-evaluation if
of the OCaml language and the strict-evaluation if of OCaLustre.

2. In the same way, since the body of a node may contain equations using the shift operator, any call
to the latter can produce the same kind of side effects. The extraction mechanism is therefore also
extended to applications. For example, the following node :

let%node call_count_cond (b) ~return:(x) =

x = if b then count () else 0

becomes, after normalization :

node ex_norm b return x =
x_aux = count () ;
x = if b then x_aux else 0

3. Finally, the same operation as for node calls is applied to each use of the call operator, since the
called function may itself perform side effects.

More generally, normalization consists in transforming an OCaLustre program from a representation
corresponding to the concrete syntax of the language into an AST, defined from the normalized grammar
described in Section 3.2.1, which can be manipulated by the compiler. This process standardizes the
internal representation of nodes, as well as their analysis, by structuring the various types of expressions
(control expressions, normal expressions, . . . ) and simplifying certain constructs. For example, tuples
present in the concrete syntax of the language are broken down into several distinct equations after
normalization. The following program :

let%node ex_tuples (a,b) ~return:(c,d) =

(c,d) = (a,b)
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is represented, in normal form, as follows :

node ex_tuples (a,b) return (c,d) =
c = a ;
d = b

The normalization of an OCaLustre program corresponds to the application of a function normalize
that transforms the abstract syntax tree resulting from the syntactic and lexical analysis of an OCaLustre
source program into an AST corresponding to the program’s internal, normalized representation (astnorm).
The normalization function can be decomposed into two functions : a first function split that “breaks
down” tuples (given in Figure 4.2), followed by the function norm which actually performs normalization
by distributing expressions into their equivalent in the grammar of the normal form. The normalization
function norm for a node is illustrated in Figure 4.3 ; it calls mutually recursive auxiliary functions normx,
where the index x corresponds to the name of the syntactic category into which each function converts a
given expression or equation. The role of these functions is to traverse the AST of the program obtained
from its syntactic analysis (with the source code represented in roman type) in order to produce an AST in
normalized form, while collecting new equations resulting from the reorganization of the AST according
to the normal form. Whenever a new equation must be created, they call a function f resh() that generates
a fresh variable name at each call.

split(y⃗ = f e) = [y⃗ = f e]
split(y = e) = [y = e]

split(y,y⃗ = e,e⃗) = (y = e) :: split(y⃗ = e⃗)

split(eqn1; ⃗eqn2) = let ⃗eqn′1 = split(eqn1) in

let ⃗eqn2
′
= split( ⃗eqn2) in

⃗eqn′1 ++
⃗eqn′2

split(let%node f x⃗ ∼return:y⃗ = ⃗eqn) = let ⃗eqn′ = split( ⃗eqn) in

let%node f x⃗ ∼return:y⃗ = ⃗eqn′

Figure 4.2 – Tuple-splitting function

4.2 Scheduling

In an OCaLustre program, the various equations constituting the body of a node are not subject to any
constraint governing their order of appearance. Indeed, since the body of a node is a system of equations
whose values are computed at each instant, nothing prevents (as in a classical mathematical system of
equations) one of these equations from referring to a variable defined several lines later in the natural
reading order (top to bottom). As a result, the following node is a perfectly valid example, even though
the equation defining the flow z refers to the flow k, which has not yet been defined in the natural reading
order, and the equation defining the flow k refers to w before it too has been defined :
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norme(e1^e2) = let (l1, e′1) = norme(e1) in

let (l2, e′2) = norme(e2) in (l1 ++ l2, e′1^e′2)

norme(□ e0) = let (l, e′0) = norme(e0) in (l,□ e′0)
norme(e0 [@when x]) = let (l, e′0) = norme(e0) in (l, e′0 when x)

norme(e0 [@whennot x]) = let (l, e′0) = norme(e) in (l, e′0 whennot x)
norme(if e1 then e2 else e3) = let x = f resh() in

let (l, eqn) = normeqn(x = if e1 then e2 else e3) in (eqn :: l, x)
norme(merge x e1 e2) = let x = f resh() in

let (l, eqn) = normeqn(x = merge x e1 e2) in (eqn :: l, x)
norme(k -» e) = let x = f resh() in

let (l, eqn) = normeqn(x = k -» e) in (eqn :: l, x)
norme(call f e0 e1 . . . en−1) = let x = f resh() in

let (l, eqn) = normeqn(x = call f e0 e1 . . . en−1) in (eqn :: l, x)
norme( f (e0)) = let x = f resh() in

let (l, eqn) = normeqn(x = f(e0)) in (eqn :: l, x)
norme(e0) = ([], e0) pour toutes les autres formes de e0

normce(if e1 then e2 else e3) = let (l1, e′1) = norme(e1) in

let (l2, ce2) = normce(e2) in
let (l3, ce3) = normce(e3) in
(l1 ++ l2 ++ l3, if e′1 then ce2 else ce3)

normce(merge x e1 e2) = let (l1, e′1) = norme(e1) in

let (l2, e′2) = norme(e2) in
(l1 ++ l2,merge x e′1 e′2)

normce(e0) = norme(e0) pour toutes les autres formes de e0

norme⃗(e0) = norme(e0)
norme⃗(e1,e2) = let (l1, e′1) = norme(e1) in

let (l2, e⃗2) = norme⃗(e2) in (l1 ++ l2, e′1 :: e⃗2)

normeqn(y = k -» e) = let (l, e′) = norme(e) in (l, y = k fby e′)
normeqn(y⃗ = f(e)) = let (l, e⃗) = norme⃗(e) in (l, y⃗ = f (⃗e))

normeqn(y = call f e0 e1 . . . en−1) = let (l0, e′0) = norme(e0) in
let (l1, e′1) = norme(e1) in . . .

let (ln−1, e′n−1) = norme(en−1) in (l0 ++ l1 ++ . . . ++ ln−1, y = call f e′0 e′1 . . . e′n−1)

normeqn(y = e) = let (l, ce) = normce(e) in (l, y = ce)

norm ⃗eqn(eqn) = let (l, eqn) = normeqn(eqn) in (l, [eqn])

norm ⃗eqn(eqn; ⃗eqn) = let (l, eqn′) = normeqn(eqn) in

let (l′, ⃗eqn′) = norm ⃗eqn( ⃗eqn) in (l ++ l′, eqn′ :: ⃗eqn′)

norm(let%node f x⃗ ∼return:y⃗ = ⃗eqn) = let ( ⃗eqn′, ⃗eqn′′) = norm ⃗eqn( ⃗eqn) in node f x⃗ return y⃗ = ( ⃗eqn′ ++ ⃗eqn′′)

Figure 4.3 – Normalization functions
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node sched (x,y) return (z,k) =
z = 3 * k ;
k = if x then w else 4 ;
w = y + 42

The OCaLustre compiler then performs, with the ultimate goal of transforming OCaLustre equations
into OCaml variable declarations, a scheduling of the body of a node. This process consists in reorganizing
the system of equations so that each flow definition appears before its use in other equations. Thus, the
scheduling of the previous example consists in processing a version of ordo where each flow definition
appears before its use :

node sched_correct (x,y) return (z,k) =
w = y + 42 ;
k = if x then w else 4 ;
z = 3 * k

Of course, the scheduling of the body of a node in no way modifies the semantics of the language,
since each equation is considered to be computed in parallel with the other equations : the reading order
of the equations does not reflect their actual execution semantics (which defines no sequential order of
evaluation).

The implementation of equation scheduling is based on the creation of a directed acyclic graph 2

representing the dependencies between the various flows within the same instant. A flow y is considered
a dependency of a flow x whenever y is referenced (within the same instant) in the definition of x. In the
dependency graph, an edge from a vertex x to a vertex y represents the fact that the flow x depends on
y. For example, Figure 4.4 shows the dependency graph of the node sched.

kz

x

w

y

Figure 4.4 – Dependency graph of the node sched

Once this graph has been constructed, the scheduling of a node simply consists in following its
reverse topological sort (without taking into account the input flows of the node) in order to produce the
sequence of equations that constitutes the body of the node in question. In our example, the scheduling
of sched therefore consists in defining first w, then k, and finally z.

An equation is well-scheduled provided that all the variables it contains, and on which it depends
instantaneously, have been previously defined. Formally, we define the function idents, which returns the
list of all variables present in an expression (or a list of expressions) :

2. The erroneous case in which this graph would be cyclic will be described in the following subsection.
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idents(e)

idents(k) ≡ ∅
idents(x) ≡ [x]
idents(Xi) ≡ ∅
idents(e^ e′) ≡ idents(e) ++ idents(e′)
idents(□ e) ≡ idents(e)
idents(e when x) ≡ x :: idents(e)
idents(e whennot x) ≡ x :: idents(e)

idents(⃗e)

idents([e]) ≡ idents(e)
idents(e, e⃗) ≡ idents(e) ++ idents(⃗e)

idents(ce)

idents(e) ≡ idents(e)
idents(merge x ce ce′) ≡ x :: idents(ce) ++ idents(ce′)
idents(if e then ce′ else ce′′) ≡ idents(e) ++ idents(ce′) ++ idents(ce′′)

For any list of variables V , the following rules define the notion of well-scheduled equations in the context
where the variables contained in V have all been previously defined. We then write V `ws eqn to mean
that the equation eqn is well-scheduled (“ws” for “well scheduled”).

V `ws eqn

y < V idents(ce) ∈ V
V `ws y = ce

y < V
V `ws y = k fby e

y⃗ < V idents(⃗e) ∈ V
V `ws y⃗ = f (⃗e)

y < V idents(e0) ∈ V idents(e1) ∈ V ... idents(en−1) ∈ V
V `ws y = call f e0 e1 ... en−1
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V `ws ⃗eqn

V `ws eqn

V `ws [eqn]

V `ws y = ce y :: V `ws ⃗eqn

V `ws y = ce; ⃗eqn

V `ws y = k fby e y :: V `ws ⃗eqn

V `ws y = k fby e; ⃗eqn

V `ws y⃗ = f (⃗e) y⃗ ++V `ws ⃗eqn

V `ws y⃗ = f (⃗e); ⃗eqn

V `ws y = call f e0 e1 ... en−1 y :: V `ws ⃗eqn

V `ws y = call f e0 e1 ... en−1; ⃗eqn

A node is then well-scheduled provided that all the equations that constitute its body are themselves
well-scheduled, in the context where the variables x⃗ representing its input parameters are defined :

`ws node

x⃗ `ws ⃗eqn

`ws node f (x⃗) return (y⃗) = ⃗eqn

The scheduling process of OCaLustre nodes is carried out after the normalization of the program.

Scheduling is therefore performed on the intermediate representation of the program and can be seen as
a function schedule of type astnorm → astnorm.

For example, consider the following (normalized) program P :

node f a return b =
b = c + 1 ;
c = 0 fby a

node g x return (y,z) =
z = y + x ;
y = x

Then, the result of applying schedule(P) is :

node f a return b =
c = 0 fby a ;
b = c + 1

node g x return (y,z) =
y = x ;
z = y + x
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4.2.1 Detection of Causality Loops

The scheduling step of OCaLustre nodes makes it possible to statically detect errors or inconsistencies
in the definition of a node’s flows. For example, the following node has an indeterminate semantics :

node causal_loop () return (c,d) =
c = 5 * d ;
d = 2 − c

Indeed, in this example the flow c depends on the flow d, and the flow d in turn depends on c. The
flows c and d thus depend on each other within the same instant. It is therefore impossible to compute,
for example, the value of c, since it depends on that of d, which itself depends on c : there are therefore
cyclic dependencies between these two flows.

This situation, called a causality loop, can appear in less obvious ways, within a long chain of depen-
dencies between flows, and even across various calls to auxiliary nodes. For this reason, the OCaLustre
compiler automatically detects such cyclic dependencies and rejects programs that contain them. This
detection is simply performed by checking that no loop exists in the graph representing dependencies
between flows : the presence of a cycle in this graph causes compilation to stop and an error message to
be displayed :

Error: Causality loop in node "causal_loop" with variables (d, c)

It should also be noted that an equation such as y = 0 ≫ (y+1) does not indicate that the flow y
depends on itself, since the use of the≫ operator implies that it is the value of the flow y at the previous
instant that is considered in the expression defining y, and dependency relations are only computed for
the same instant. Thus, such an equation is fully compatible with the semantics of the language and does
not indicate the existence of a causality loop.

4.2.2 Limitation Due to Separate Compilation

This scheduling process for the body of nodes, combined with our model of separate compilation
of each OCaLustre node, can lead to the rejection of certain programs that are nevertheless correct. For
example, consider the following program fragment :

node shift_one x return y =
y = 0 fby x

node call_shift_one i return b =
a = b + i ;
b = shift_one a

During the scheduling of the node call_shift_one, the following dependency graph is generated :

ab i
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Since this graph contains a loop, the node is therefore rejected at compilation. However, if we consider
a version of the program in which inlining of shift_one is performed, that is, the replacement of the call
to shift_one by the equation contained in its body, then a different dependency graph is generated :

node call_shift_one i return b =
a = b + i ;
b = 0 fby a

ab i

In fact, in reality the flow b does not instantaneously depend on a, since a appears on the right-hand
side of the≫ operator once the inlining of shift_one has been performed : the program did not contain
a causality loop. The temporal shift information between the inputs and outputs of a node is not known
by the OCaLustre compiler, which treats external nodes as black boxes, and thus assumes that every
parameter of a call to a node is an instantaneous dependency for its output flows.

In our context of use, this limitation nevertheless seems acceptable, insofar as the separate compilation
model avoids duplicating the body of a node for each equation that calls it, and thus helps reduce the
final memory footprint of OCaLustre programs.

4.3 Clock Inference

Once normalization and scheduling have been performed, the next step in compiling an OCaLustre
program consists in inferring the clocks of each expression contained in the bodies of its various syn-
chronous nodes.

This inference mechanism is derived from the type inference system in the style of Hindley-Milner
[Mil78], following the work of Colaço and Pouzet [CP03] on clock typing, while restricting polymorphism
to a single type variable : the base clock (•).

Once a clock type has been assigned to each expression of a program, and thus the program satisfies
the semantics of clock typing (3.2.4), the corresponding AST is annotated by associating each equation
and each constant with its clock. These annotations are particularly necessary for the static verification
of clock typing, which we will address in Section 5.2.

The abstract syntax tree generated in this way has a structure slightly different from that of a normali-
zed program. It corresponds to the grammar of the normal form in which certain elements are annotated
with their clock type. We denote by astclocked an abstract syntax tree built from this grammar, and the clock
inference process then corresponds to a function clocks of type astnorm → astclocked. In the following, we
describe only the constructs that differ from the grammar of the normal form.
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— Constants are annotated with their clock type, inferred by the compiler :
e ::=

| kck

| (. . . )

— And equations are annotated with their clock, in particular an application is annotated with its
conditional application clock :

eqn ::= équation
| y =

ck
ce expression

| y =
ck

k fby e fby

| y⃗ =
ck

f (⃗e) application

| y =
ck

call f e0 e1 .. en−1 application de fonction OCaml

For example, consider the following program Q :

node g (a,b,c) return z =
x = a when c ;
y = b + 2 ;
z =merge c x y

Then, the result of applying clocks(Q) is :

node g (a,b,c) return z =
x =

(• on c)
a when c ;

y =
(• onnot c)

b + 2(• onnot c) ;

z =
•

merge c x y

The OCaLustre compiler also includes a verifier for the inferred clock types. This verifier, whose proof
of correctness will be given in Chapter 5, ensures that for a given program, the types inferred by the
OCaLustre compiler are consistent with the formal description of the type system given earlier. This
verifier is enabled using the -check_clocks option of the compiler.

4.4 Translation to OCaml

The final step in compiling an OCaLustre program consists in translating the program, in its interme-
diate representation annotated with clocks, into an OCaml AST compatible with any OCaml compiler.

This translation step is carried out by separately converting each node of an OCaLustre program into
an OCaml function, following the approach described by Biernacki et al. [BCHP08] and used for the com-
pilation of SCADE 6 [CPP17] as well as other compilers of “Lustre-like” languages [GHKT14, MDLM18].
This separate compilation model, distinct from Lustre’s compilation model where all components of a
program are grouped into a single main loop, was chosen in order to reduce the size of programs in
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which multiple calls are made to the same nodes, and also to allow better modularization of the various
components of a program.

Our solution follows Lustre’s single-loop compilation model, but with separate compilation : each
OCaLustre node is compiled into a distinct function, while the program’s main node, which calls the
generated functions, is executed in an infinite loop that reads the program inputs, executes the main
node, and writes the computed outputs.

In this section, we describe compilation schemes representing the translation of the AST of an OCaLustre
program into an OCaml program. The translation from the OCaLustre AST to OCaml code is based on the
translation function ~·� of type astclocked → astocaml, which traverses the OCaLustre program and returns an
abstract syntax tree corresponding to an OCaml program, manipulable by the standard OCaml compiler.

Traduction des expressions

OCaLustre expressions are translated directly, with the subsampling operators used for clock typing
being erased :

~()� = ()

~k� = k

~x� = x

~Xi� = Xi

~e1^e2� = ~e1�^~e2�

~□ e� = □ ~e�

~e when x� = ~e�

~e whennot x� = ~e�

Lists of OCaLustre expressions become OCaml tuples of expressions :

~[e]� = ~e�

~e, es� = ~e�,~es�

The merge operator is translated in the same way as the conditional operator :

~if e then ce1 else ce2� = if ~e� then ~ce1� else ~ce2�

~merge x ce1 ce2� = if ~x� then ~ce1� else ~ce2�

Translation of a Node and Its Equations

An OCaLustre node is translated into an OCaml function that generates a closure whose environment
contains the registers required for the use of the followed-by operator, as well as the various initializations
of the instances of auxiliary nodes used in the original node :
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~node f (x⃗) returns (y⃗) = e⃗qs� =

let ~ f� () = inits(e⃗qs, fun ~x⃗� -> decls(e⃗qs,updates(e⃗qs, ~y⃗�))0)0

Initializations : The function inits generates the variable declarations that make up the environment
of the created closure. It is parameterized by a list of equations e⃗qs, an integer n (needed to distinguish
between two instances of the same node), and a continuation K that represents the subsequent compilation
steps.

Each use of the≫ operator results in the definition of a register (an OCaml reference) initialized by
the value on the left-hand side of this operator :

inits(y =
ck

k fby e; e⃗qs,K)n = let _~y�_fby = ref ~k� in inits(e⃗qs,K)n

Each call to an auxiliary node results in the generation of an instance of this node, by invoking the
function of the same name. These instances are numbered to support the case where multiple instances
of the same node are called :

inits(y⃗ =
ck

g (⃗e); e⃗qs,K)n = let ~g�_~n� = ~g� () in inits(e⃗qs,K)n+1

The other forms of equations do not produce any declaration in the environment of the created
closure :

inits(eq; e⃗qs,K)n = inits(e⃗qs,K)n

inits(∅,K)n = K

A list of variables y⃗ is translated into a tuple of variables, or into the value unit if the list is empty :

~()� = ()

~y� = y

~y, y⃗� = ~y�,~y⃗�

Declarations : The body of the node is traversed by the function decls in order to convert each equation
into a variable declaration in the closure returned by the generated function. An equation is “guarded”
by the condition coming from its clock (the function guard is defined later in this section) :
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decls(y =
ck

ce; e⃗qs,K)n = let ~y� = guard(ck, ce)y in decls(e⃗qs,K)n

decls(y =
ck

k fby e; e⃗qs,K)n = let ~y� = guard(ck, !_~y�_fby)y in decls(e⃗qs,K)n

decls(y =
ck

call f e0 e1 . . . em−1); e⃗qs,K)n = let ~y� = guard(ck, f ~e0� ~e1� . . . ~em−1�)y in decls(e⃗qs,K)n

decls(y⃗ =
ck

g (⃗e); e⃗qs,K)n = let ~y⃗� = guard(ck, ~g�_~n� ~e⃗�)y⃗ in decls(e⃗qs,K)n+1

decls(∅,K)n = K

When the clock of a node call is false, a placeholder value representing absence (i.e. the ⊥ of the
language semantics) must be assigned to the declared variable. Several solutions can be considered to
represent such a generic value. For example, one might consider translating all flows of the OCaLustre
language into values of type option 3, and thus assign the OCaml value None to an absent flow, but
this solution causes a significant increase in the size of the generated program and leads to systematic
memory allocations. Another alternative would be to use an OCaml compiler capable of handling nullable
types [MV14], with the disadvantage of losing portability of the generated code. More simply, the current
OCaLustre compiler replaces any absent value (⊥) with the value Obj.magic (). This special value has
the particular property of being considered well-typed regardless of its usage context (for example, the
expression Obj.magic () + 42 causes no problem for the compiler), and thus violates the assumptions
that guarantee the type safety of a program. It is therefore important to ensure statically that at no point
during the execution of the program is this value actually used, and that it is present only to satisfy the
construction of an OCaml program where an expression must always have a value (even if here it is
merely a default value that is never used).

The function guard therefore conditions certain expression evaluations and replaces them with an
absence value in the case where their clock is false (or absent). It calls a function bottom, which thus
generates a representation of absence with the correct number of elements :

guard(•, e)y⃗ = e

guard(ck, e)y⃗ = if ~ck� then e else bottom(y⃗)

with

~•� = true
~ck on x� = (~ck� && ~x�)

~ck onnot x� = (~ck� && not ~x�)

and

3. The definition of this type is as follows : type ’a option = None | Some of ’a.
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bottom(()) = ()

bottom(y) = Obj.magic ()

bottom(y, y⃗) = Obj.magic (),bottom(y⃗)

Updates : Before returning the tuple of variables corresponding to the output flows of the node, the
generated closure updates each register resulting from the use of≫ using the function updates :

updates(x =
ck

k fby e :: e⃗qs,K) = guard(ck, ~x�_fby := ~e�) ; updates(e⃗qs,K)

updates(eq :: e⃗qs,K) = updates(e⃗qs) (pour les autres formes de eq)

updates(∅,K) = K

Translation of a Program

Finally, generating the OCaml code of an OCaLustre program amounts to sequentially generating the
code of each node it contains :

~node :: ⃗node� = ~node�;;

~ ⃗node�

~node :: ∅� = ~node�

4.5 Example

Let us consider a simple OCaLustre program that illustrates all the compilation steps described above.
This program consists of two nodes : the first node, counting, increments a counter at each instant, which
is reset if its parameter is true. The second node, counting_and, counts the number of times its second
and third parameters are both true, as long as its first parameter is false :

let%node counting (reset) ~return:(c) =

c = if reset then 0 else 0 ≫ (c + 1);

let%node counting_and (reset,b1,b2) ~return:(clk,c_sampled) =

c_sampled = counting (reset [@when clk]);

clk = (b1 && b2)

After normalization, the side-effect expression (c + 1) in counting is extracted from the equation c
into a separate equation, c_aux :
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node counting (reset) return (c) =
c_aux = 0 fby (c + 1) ;
c = if reset then 0 else c_aux

node count_and (reset,b1,b2) return (clk,c_sampled) =
c_sampled = count (reset when clk) ;
clk = (b1 && b2)

The scheduling step reorganizes the body of count_and so that the flow c is defined before its use in
c_sampled :

node counting (reset) return (c) =
c_aux = 0 fby (c + 1) ;
c = if reset then 0 else c_aux

node counting_and (reset,b1,b2) return (clk,c_sampled) =
clk = (b1 && b2) ;
c_sampled = counting (reset when clk)

After clock inference, the equations and constants are annotated with their clock types :

node counting (reset) return (c) =
c_aux =

•
0 fby (c + 1•) ;

c =
•

if reset then 0• else c_aux

node counting_and (reset, b1, b2) return (clk, c_sampled) =
clk =

•
(b1 && b2) ;

c_sampled =
• on clk

counting (reset when clk)

Finally, the translation into a standard OCaml program produces the definition of two functions, each
corresponding to a node of the original program :
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let counting () =

let c_aux_fby = ref 0 in

fun reset ->

let c_aux = !cpt_aux_fby in

let c = if reset then 0 else c_aux in

c_aux_fby := (c + 1);

c

let counting_and () =

let counting1 = counting () in

fun (reset,b1,b2) ->

let clk = b1 && b2 in

let c_sampled = if clk then count1 reset else Obj.magic () in

(clk,c_sampled)

For each node of type tin → tout, the type of the OCaml function generated at the end of this compilation
process is unit → (tin → tout), which corresponds to the type of a function that returns an instance of the
node in the form of an OCaml function. In the previous example, the type of count is unit→ (bool→ int),
and that of count_and is unit→ ((bool ∗ bool ∗ bool)→ (bool ∗ int)).

Generation of the Runtime Loop :

The code responsible for reading inputs from the environment, executing a synchronous instant, and
producing the outputs computed during that instant is called the runtime loop [Bou98]. The code of the
main function of the OCaml program, which implements a minimal runtime loop allowing the previous
synchronous program to be executed, then has the following form :

let () =

(* initialization of the main node *)

let main = counting_and () in

while true do

(* reading inputs *)

let (reset,b1,b2) = input_counting_and () in

(* execution of one step of the main node *)

let (clk,c_sampled) = main (reset,b1,b2) in

(* writing outputs *)

output_counting_and (clk,c_sampled)

done

This code can be generated automatically by using the -m option (followed by the name of the main
node) of the OCaLustre compiler. This option also generates a stub code to be completed, which contains
the input and output functions of the synchronous program.
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Conclusion du chapitre

In this chapter, we have described the different steps that make it possible to transform an OCaLustre
program into a sequential OCaml program. These transformations provide several typing and schedu-
lability guarantees that make it possible to build programs with reinforced safety. Several properties
related to these typing guarantees can then be verified in order to validate this increase in safety. In the
next chapter, we will describe the formalization and the proof of such properties.
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5 OCaLustre Properties Formalized and
Proved with Coq

In this chapter, we describe several properties that derive from the formal specification of OCaLustre,
and we formalize and prove them in Coq. These properties concern the type systems described in Section
3.2 (which govern the “standard” typing of data and clock typing), and allow us to check the consistency
between these formal systems and the implementation in the OCaLustre compiler prototype. Verifying
these properties makes it possible to guarantee the safety of certain aspects of the OCaLustre compiler,
such as the correctness of OCaLustre value typing after their translation into OCaml, as well as the
consistency of the clock types inferred by OCaLustre with the formal system described previously. In
particular, the code of a clock verifier, obtained by extraction with Coq from the formal specification of the
clocking rules of a program, is integrated into the OCaLustre compiler, which follows the steps described
in the previous chapter.

5.1 Translation and Typing Correctness

In order to leave to the type-checker included in the standard OCaml compiler the responsibility of
verifying that OCaLustre nodes are well typed, we present in this section a proof of the typing correctness
of OCaLustre with respect to its translation.

This proof makes it possible to establish two properties that ensure that OCaLustre programs are well
typed if and only if the generated OCaml code is itself well typed :

— A preservation property, which states that if the OCaLustre code is well typed, then its translation
is also well typed 1.

— A safety property, which states that if the generated OCaml code is well typed, then the corres-
ponding OCaLustre node is also well typed : no typing information is lost that could turn a badly
typed OCaLustre program into well-typed OCaml code.

The metatheoretical proof of these properties avoids the need to add an ad hoc type-checker to
OCaLustre, and instead relies on the strength of the typing mechanism of the native OCaml compiler. It
is indeed the OCaml type-checker that, if it detects a typing error in the generated code, makes it possible
to deduce that the original OCaLustre program is ill typed.

In this section, we progressively describe the main steps of this correctness proof. Our reasoning also
relies only on nodes considered “well formed”. We consider that a node node is well formed (denoted
`w f node) if all the names of the flows it defines are distinct, if all its parameters are distinct, and if no
input parameter name is reused to define a new flow name in the body of the node :

1. This property can be seen as a form of completeness in the sense that no correct program is rejected : typing errors are not
introduced by the translation.
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`w f node

distinct(x⃗) distinct(y⃗) x⃗ ∩ y⃗ = ∅ distinct(names( ⃗eqn)) x⃗ ∩ names( ⃗eqn) = ∅

`w f node f (x⃗) returns (y⃗) = ⃗eqn
avec

distinct(x⃗)

distinct(∅)

y < y⃗ distinct(y⃗)

distinct(y :: y⃗)

et
names( ⃗eqn)

names(∅) ≡ ∅
names(x =

ck
ce; ⃗eqn) ≡ x :: names( ⃗eqn)

names(x =
ck

k fby e; ⃗eqn) ≡ x :: names( ⃗eqn)

The correctness proof with respect to typing of the translation presented in this section relies mainly
on an equivalence theorem, which states that a well-formed OCaLustre node is well typed if and only if
its translation is also well typed :

Theorem 5.1.1 (Typing Correctness of a Node).

∀ node t, `w f node⇒ ( ` node : t⇔ ` ~node� : unit → t)

The proof of this equivalence makes it possible to establish the two properties of preservation and
safety. The left-to-right implication ensures, by contraposition, that if the translation of a node is ill typed
in OCaml, then the node is also ill typed in OCaLustre (preservation). The right-to-left implication states
that if the translation of a node is well typed, then the node itself is well typed. By contraposition, if a
node is ill typed, then its translation is also ill typed (safety).

All of the theorems and auxiliary lemmas required for this proof are available online, in the form
of documentation and Coq files [⚓1]. It should be noted, however, that this proof is carried out on a
simplified version of OCaLustre as well as of the OCaml language (which we call “pseudo-ML”) : in
particular, we do not handle the parametric polymorphism used in OCaml, OCaLustre programs are
represented as a single node (with no possibility of node calls 2), and flows can only be of type int or bool.
Moreover, OCaml function calls through the keyword call have not been formalized. These should not
conflict with the correctness of the proof since their compilation is direct : a call generates a function
application (and the types coincide). The addition of node calls is more complex, since it introduces new
names into the generated code after compilation (as each call to a node leads to the creation of a closure
instance in the generated code). The integration of these constructions into the proof of typing correctness
of the translation is work currently in progress. The version of the proof presented in this manuscript
and in the associated Coq files is therefore simplified.

2. In this sense, the OCaLustre programs treated here are close to Lustre programs, for which, during compilation, the code
of the various intermediate nodes is inlined into the main node.
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5.1.1 Partial Translation Using Simultaneous Declarations

In order to break down the typing correctness proof, we first prove the equivalence of typing between
the OCaLustre program and the same program translated into the pseudo-ML language extended with a
non-standard construct. This construct, of the form “let ... with ... in ...”, allows the simultaneous definition
of variables.

For example, the following code snippet is correct in pseudo-ML, whereas it would not be in the OCaml
language, which requires that multiple variable definitions (constructed with the keyword “and” 3) not
depend on one another :

let x = y with y = 2 in x

This intermediate construct is not intended to be executed ; it simply serves to factorize the proofs of
typing correctness (postponing the introduction of the notion of well-scheduling to a proof step described
later), for which the final theorem will not involve such simultaneous declarations.

Typing Rules of pseudo-ML

The grammar of the pseudo-ML language, very close to that of OCaml, is given in Figure 5.1. The
main difference between this grammar and that of OCaml is the addition of the simultaneous declaration
construct “let ... with ...” described above.

It should also be noted that, in order to simplify the proof process (by ignoring name-shadowing phe-
nomena), the namespace reserved for variables newly introduced by the translation and the namespace
reserved for variables already present in the node declaration are distinct by construction : the typing
environment R contains the set of pairs (name, type) of the variables introduced by the compilation, while
the environment Γ concerns the pairs (name, type) of the other variables. In this case, the names contained
in R (resulting from the translation of≫ ) all correspond to references.

3. Mutually recursive definitions are only possible with functional values in OCaml.



126 Chapitre 5. OCaLustre Properties Formalized and Proved with Coq

e ::= expressions
| ⊥ magic
| () unit
| k constante
| x variable
| xr registre
| ref e référence
| !e déréférencement
| e := e′ assignation
| e^ e′ opérateur binaire
| □ e opérateur unaire
| if e then e′ else e′′ conditionnelle
| e ; e′ séquence
| (⃗

e
)

n-uplet
| fun x⃗→ e fonction n-aire
| let δ in e′ déclarations de variables
| let δr in e′ déclarations de variables (nouveaux noms)
| let y = e in e′ déclaration de variable
| let yr = e in e′ déclaration de variable (nouveau nom)

δ ::= déclarations de variables simultanées
| ∅
| (y = e) with δ

δr ::= déclarations de variables simultanées (nouveaux noms)
| ∅
| (yr = e) with δr

Figure 5.1 – Grammaire de pseudo-ML

The typing rules for simultaneous declarations are then as follows :

R,Γ ` δ : t⃗

R,Γ ` ∅ : ∅

Γ (x) = t R,Γ ` e : t R,Γ ` δ : t⃗

R,Γ ` (x = e) with δ : t ∗ t⃗

R,Γ ` δr : t⃗

R,Γ ` ∅ : ∅

R (x) = t R,Γ ` e : t R,Γ ` δr : t⃗

R,Γ ` (xr = e) with δr : t ∗ t⃗

They state that for a set of simultaneous variable declarations to be well typed, each of its elements
must be well typed in the same typing environment.

All the other typing rules of pseudo-ML, which do not differ significantly from those of a standard ML
language, are given in Figure 5.2.
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Γ ` x⃗ : t⃗

Γ ` ∅ : ∅

Γ (x) = t Γ ` x⃗ : t⃗

Γ ` x :: x⃗ : t ∗ t⃗

R,Γ ` e⃗ : t⃗

R,Γ ` ∅ : ∅

R,Γ ` e : t R,Γ ` e⃗ : t⃗

R,Γ ` e, e⃗ : t ∗ t⃗

R,Γ ` e : t

R,Γ ` ⊥ : t R,Γ ` () : unit R,Γ ` int_literal : int R,Γ ` bool_literal : bool

Γ (x) = t
R,Γ ` x : t

R (x) = t
R,Γ ` xr : t

R,Γ ` e : t
R,Γ ` □ e : t

R,Γ ` e : int R,Γ ` e′ : int
R,Γ ` e^int e′ : int

R,Γ ` e : bool R,Γ ` e′ : bool
R,Γ ` e^bool e′ : bool

R,Γ ` e : t R,Γ ` e′ : t
R,Γ ` e^comp e′ : bool

R,Γ ` e : bool R,Γ ` e′ : t R,Γ ` e′′ : t
R,Γ ` if e then e′ else e′′ : t

R,Γ ` e : t
R,Γ ` ref e : t ref

R,Γ ` e : t ref
R,Γ ` !e : t

R,Γ ` e : t ref R,Γ ` e′ : t
R,Γ ` e := e′ : unit

R,Γ ` e : unit R,Γ ` e′ : t
R,Γ ` e ; e′ : t

R,Γ ` e⃗ : t⃗

R,Γ ` (⃗e) : t⃗

Γ′ =
(
x⃗ : t⃗
)

R,Γ′ ∪ Γ ` e : t′

R,Γ ` fun x⃗→ e : t⃗→ t′

R,Γ ` e : t R, {x : t} ∪ Γ ` e′ : t′

R,Γ ` let x = e in e′ : t′
R,Γ ` e : t {x : t} ∪R,Γ ` e′ : t′

R,Γ ` let xr = e in e′ : t′

names(δ) = y⃗ Γ′ =
(
y⃗ : t⃗
)

R,Γ′ ∪ Γ ` δ : t⃗ R,Γ′ ∪ Γ ` e′ : t′

R,Γ ` let δ in e′ : t′

names(δr) = y⃗ R′ =
(
y⃗ : t⃗
)

R′ ∪R,Γ ` δr : t⃗ R′ ∪R,Γ ` e′ : t′

R,Γ ` let δr in e′ : t′

Figure 5.2 – Typing Rules of pseudo-ML
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Algorithmic Typing Rules of OCaLustre

To carry out the proof of the expected equivalence, we reason on the basis of algorithmic typing rules
for OCaLustre, similar to the declarative typing rules discussed in Section 3.2.2. These rules are given in
Figure 5.3. The typing rule of a node refers to the names function introduced earlier, whose role is to
return the names of the different flows defined by a list of equations. It should also be noted that, in order
to present a set of easily understandable rules, the typing rule for nodes here assumes that the nodes of
an OCaLustre program contain no locally scoped flows : all flows defined in the body of a node appear
in its outputs. This temporary limitation, which allows us to follow the progression of the Coq proof,
will be lifted at the end of this section, where we extend our proof to nodes that return only a subset of
the flows defined by the equations in the body of a node.

Γ ` e : t

Γ ` () : unit Γ ` int_literal : int Γ ` bool_literal : bool
Γ ` e : t
Γ ` □ e : t

Γ ` e : int Γ ` e′ : int
Γ ` e^int e′ : int

Γ ` e : bool Γ ` e′ : bool
Γ ` e^bool e′ : bool

Γ ` e : t Γ ` e′ : t
Γ ` e^comp e′ : bool

Γ (x) = t
Γ ` x : t

Γ ` e : t Γ ` x : bool
Γ ` e when x : t

Γ ` e : t Γ ` x : bool
Γ ` e whennot x : t

Γ `ce ce : t

Γ ` e : t
Γ `ce e : t

Γ ` x : bool Γ `ce ce : t Γ `ce ce′ : t
Γ `ce merge x ce ce′ : t

Γ ` e : bool Γ `ce ce : t Γ `ce ce′ : t
Γ `ce if e then ce else ce′ : t

Γ ` ck

Γ ` •
Γ ` ck Γ (x) = bool

Γ ` ck on x
Γ ` ck Γ (x) = bool
Γ ` ck onnot x

Γ ` eqn : t

Γ ` ck Γ
(
y
)
= t Γ `ce ce : t

Γ ` y =
ck

ce : t
Γ ` ck Γ

(
y
)
= t Γ ` e : t Γ ` k : t

Γ ` y =
ck

k fby e : t

Γ ` ⃗eqn : t⃗

Γ ` ∅ : ∅

Γ ` eqn : t Γ ` ⃗eqn : t⃗

Γ ` eqn; ⃗eqn : t ∗ t⃗

` node : t

Γ =
(
y⃗ : t⃗′
)
Γ′ =

(
x⃗ : t⃗
)
Γ ∪ Γ′ ` ⃗eqn : t⃗′ names( ⃗eqn) = y⃗

` node f (x⃗) returns (y⃗) = ⃗eqn : t⃗→ t⃗′

Figure 5.3 – Algorithmic Typing Rules of OCaLustre
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Translation into pseudo-ML

The translation function ~·� from an OCaLustre node into pseudo-ML code is given in Figure 5.4. This
translation is similar to that from OCaLustre to OCaml, except that a list of equations is not translated
into a sequence of nested “let ... in ...” declarations, but into simultaneous “let ... with ...” declarations
specific to pseudo-ML.

~e�

~()� ≡ ()
~k� ≡ k
~x� ≡ x
~e^ e′� ≡ ~e�^ ~e′�
~e when x� ≡ if x then ~e� else⊥
~e whennot x� ≡ if x then⊥ else ~e�
~□ e� ≡ □ ~e�

~ce�

~if e then ce′ else ce′′� ≡ if ~e� then ~ce′� else ~ce′′�
~merge x ce ce′� ≡ if ~x� then ~ce� else ~ce′�

~ck�

~•� ≡ true
~ck on x� ≡ ~ck�&& x
~ck onnot x� ≡ ~ck�&& (not x)

~ ⃗eqn�inits

~∅�inits ≡ ∅
~y =

ck
k fby e; ⃗eqn�inits ≡ (yr = ref k) with ~ ⃗eqn�inits

~eqn; ⃗eqn�inits ≡ ~ ⃗eqn�inits

~ ⃗eqn�

~∅� ≡ ∅
~y =

ck
ce; ⃗eqn� ≡ (y = if ~ck� then ~ce� else⊥) with ~ ⃗eqn�

~y =
ck

k fby e; ⃗eqn� ≡ (y = if ~ck� then !yr else⊥) with ~ ⃗eqn�

~ ⃗eqn�updates

~∅�updates ≡ ()
~y =

ck
k fby e; ⃗eqn�updates ≡ (if ~ck� then (yr := ~e�) else ()) ; ~ ⃗eqn�updates

~eqn; ⃗eqn�updates ≡ ~ ⃗eqn�updates

~node�

~node f (x⃗) returns (y⃗) = ⃗eqn� ≡ fun ()→ let ~ ⃗eqn�inits in (fun x⃗→ let ~ ⃗eqn� in (~ ⃗eqn�updates ;
(
~y⃗�
)
))

Figure 5.4 – Translation Function from OCaLustre to pseudo-ML
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Typing Correctness in pseudo-ML

Based on the functions and rules defined in the previous sections, we now present the various steps
needed to prove typing correctness with respect to the translation of an OCaLustre node into a pseudo-ML
program.

First, it is proved that any simple expression (e) preserves, under the same environment Γ, the same
type after translation :

Lemme 5.1.1 (Typing Correctness of Simple Expressions).

∀R Γ e t, (Γ ` e : t⇔ R,Γ ` ~e� : t)

From this lemma, we deduce that any conditional expression (ce) also preserves the same type after
translation :

Lemme 5.1.2 (Typing Correctness of Conditional Expressions).

∀R Γ ce t, (Γ ` ce : t⇔ R,Γ ` ~ce� : t)

From these lemmas, we prove that a list of equations preserves the same type after translation,
provided that the initialization and update steps of the registers in the generated function (which may
appear in the translated equations) are well typed in the environment R. Moreover, the names of the
flows defined by these equations must all be distinct : for example, the same flow x cannot be defined
twice by two different equations in the same node.

Lemme 5.1.3 (Typing Correctness of Equations). ∀R Γ ⃗eqn t,

distinct(names( ⃗eqn))⇒ R,∅ ` ~ ⃗eqn�inits : t⇒ R,Γ ` ~ ⃗eqn�updates : unit⇒ ∀ t′, (Γ ` ⃗eqn : t′ ⇔ R,Γ ` ~ ⃗eqn� : t′)

We first reason about nodes in which all equations defined in their body correspond to output flows.
In other words, we initially deal with nodes that do not have flows whose scope is purely local. A node
node that does not define locally scoped flows then satisfies the predicate nolocals(node) :

nolocals(node)

y⃗ = names( ⃗eqn)

nolocals(node f (x⃗) returns (y⃗) = ⃗eqn)

The combination of the previous lemmas makes it possible to prove the typing correctness lemma for
a node, which states that, for any type t, if a node node is well formed, then it has type t if and only if its
translation has type unit→ t (in an initially empty environment) :

Lemme 5.1.4 (Typing Correctness of a Node (without locally scoped flows)).

∀ node t, `w f node⇒ nolocals(node)⇒ (` node : t⇔ ∅,∅ ` ~node� : unit→ t)

The previous lemma only applies to nodes for which no flow is locally scoped. In other words, the
pseudo-ML function generated for such nodes returns an n-tuple containing exactly the list of all variables
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defined in the function. In order to extend this property to any node definition (including those that make
use of locally defined flows—and thus are not contained in the list of output variables), we derive from
the typing rule for a node presented in Figure 5.3 a new rule that, in particular, allows us to state that the
output flows are a subset of the flows computed in a node :

` node : t

` node f (x⃗) returns (y⃗) = ⃗eqn : t⃗→ t⃗′′ `w f node f (x⃗) returns (y⃗) = ⃗eqn (⃗z : t⃗′) ⊆ (y⃗ : t⃗′′)

` node f (x⃗) returns (⃗z) = ⃗eqn : t⃗→ t⃗′

We can then finally derive the typing correctness lemma for a well-formed OCaLustre node, which
may potentially contain locally scoped flows :

Lemme 5.1.5 (Typing Correctness of a Node).

∀ node t, `w f node⇒ (` node : t⇔ ∅,∅ ` ~node� : unit→ t)

We can thus deduce that any OCaLustre program consistent with the typing rules of the language
results in a pseudo-ML program that is itself well typed.

5.1.2 Translation Using Nested Declarations

The pseudo-ML language includes, in addition to the “let ... with ... in ...” construction discussed in the
previous section, a “let ... in ...” construction that only allows the declaration of a single variable, as in the
OCaml language. Thus, converting pseudo-ML code that uses simultaneous declarations into pseudo-ML
code that uses a sequence of nested declarations amounts to producing a program whose typing rules
are similar to those of an OCaml program. Consequently, proving that the translation of OCaLustre
programs into pseudo-ML preserves typing correctness when “let ... with ... in ...” is replaced with “let ...
in ...” makes it possible to verify that the sequential OCaml program generated from an OCaLustre node
(detailed earlier in Section 4.4) is itself well typed, since in this case the translation rules into pseudo-ML
and into OCaml are very close 4.

The function � · � converting a program containing simultaneous declarations into a program
containing nested declarations is described in Figure 5.5.

Nevertheless, the typing equivalence between code containing simultaneous declarations and code
containing nested declarations can only be verified provided that there exists an ordering of the nested
“let” statements such that no variable is used in the declarations of earlier variables before it has been
declared. For example, simply replacing “let ... with ...” by “let ... in ...” in the code snippet presented in
the previous section would be incorrect (in both OCaml and pseudo-ML), since it would then refer to the
variable y in order to assign a value to the variable x before y itself is defined :

let x = y in let y = 2 in x

whereas changing the order of the declarations yields correct code with the expected semantics :

4. Even if some differences remain, such as the fact that certain variables are typed in a separate environment.
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� δr �e′

� ∅�e≡ e
� (yr = e′) with δr �e≡ let yr = e′ in � δr �e

� δ�e′

� ∅�e≡ e
� (y = e′) with δ�e≡ let y = e′ in � δ�e

� e′ �

� let δ in e�≡� δ��e�
� let δr in e�≡� δr ��e�
� fun x⃗→ e�≡ fun x⃗→� e�
� e�≡ e

Figure 5.5 – Conversion Function from Simultaneous Declarations to Nested Declarations

let y = 2 in let x = y in x

The conversion from simultaneous declarations to nested declarations is therefore valid only if there
exists an order of appearance of the variables in the simultaneous declarations that prevents any reference
to a variable before its definition. This property is in fact exactly equivalent to the notion of “well
scheduling” of an OCaLustre program. Indeed, the scheduling step of OCaLustre programs is precisely
intended to find a variable declaration order that allows the definition of variables in sequential code.

Simultaneous pseudo-ML declarations resulting from the translation of equations of an OCaLustre
node can therefore be converted into nested declarations only if these equations are well scheduled :

Theorem 5.1.2 (Equivalence of let ... with and let (declarations)).

∀ x⃗ t⃗x ⃗eqn, δ = ~ ⃗eqn�⇒ x⃗ ∩ vars(δ) = ∅⇒ distinct(vars(δ))⇒ x⃗ `ws eqns⇒
∀ Γ t, Γ = (x⃗ : t⃗x )⇒ (R,Γ ` lets δ in e : t⇔ R,Γ `� δ�e: t)

Consequently, any pseudo-ML program (resulting from the translation of a well-scheduled OCaLustre
node) with simultaneous declarations is well typed if and only if an identical program in which the
simultaneous declarations are converted into nested declarations is also well typed, and has the same
type :

Lemme 5.1.6 (Equivalence of let with and let (node)).

∀ node t, `ws node⇒ (` ~node� : t⇔ `� ~node�� : t)

In conclusion, from the lemmas and theorems stated in this section we can deduce that any well-
scheduled OCaLustre node is well typed if and only if its translation into an ML language with nested
declarations (such as OCaml) is also well typed.
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Theorem 5.1.3 (Type Preservation of an OCaLustre Node Translated to OCaml).

∀ node t, `ws node⇒ (` node : t⇔ `� ~node�� : t)

This theorem allows us to validate the fact that it is not strictly necessary to implement a type checker
specific to OCaLustre, since the OCaml code generated by compiling a node contains all the typing
information of the original node. Consequently, any node that is ill-typed in OCaLustre will be detected
by the OCaml compiler’s type checker.

To extend this type preservation property to complete OCaLustre programs, however, it would be
necessary to consider in particular the mechanism of node calls, which are translated into function
applications in OCaml.

5.2 Clock Typing Verification

The synchronous clock system, integrated into the OCaLustre language, offers developers the ability
to associate presence conditions with each flow manipulated by a synchronous program. The clock typing
semantics, defined in Section 3.2.4, ensures that operators in the language may only operate (in most cases)
on flows driven by the same clock. As a result, adherence to this semantics guarantees that no absent flow
value is ever read during program execution, thereby avoiding any erroneous or unpredictable behavior.

In order to assign a clock to each flow in the language, the OCaLustre compiler implements a clock
inference algorithm, modeled after those used in Heptagon and SCADE and derived from the work of
Colaço and Pouzet [CP03] (based on Milner’s W algorithm [Mil78]). This algorithm statically associates
each expression of the language with a synchronous clock, while respecting the clock typing semantics.

To formally ensure that the clocks inferred by the compiler indeed conform to the clocking semantics
of the language, we introduce in this section a clock checker for OCaLustre. The role of this checker,
integrated into the OCaLustre compiler, is to read an abstract syntax tree in which each expression is
annotated with its synchronous clock (as inferred by the clock typing algorithm) , and to indicate whether
this AST is correct with respect to the semantics of synchronous clock typing. Validation by the clock
checker therefore contributes to the safety of the language, by ensuring that the inferred clocks conform
to the formal specification given in Section 3.2.4.

The implemented clock checker is integrated into the OCaLustre compilation pipeline immediately
after the clock inference process (Figure 5.6) : if the inferred clocks are consistent with the typing rules
known to the checker, then the compilation of an OCaLustre program can proceed. Otherwise, the
compilation process is halted and the compiler returns an error.

The solution detailed in this section therefore consists of the a posteriori verification of the consistency
of the clocks assigned to expressions, and thus represents a certifying compiler [PSS98] for the safety of
inferred clock types. Such a method constitutes an alternative to a certified compiler, for which the proof
of correctness of the clock inference algorithm implemented in OCaLustre would have been carried out.

It should be noted that verifying the correct clocking of a node is compatible with the possibility for
this node to have inputs or outputs that are absent. In this sense, our work is close to recent research that
continues the effort of designing a certified Lustre compiler by adding clocked arguments [BP19].
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Clock inference

Clock typing verification

Code generation Error

. . .

correct clocking incorrect clocking

Figure 5.6 – Insertion of the clock checker into the compilation chain of an OCaLustre
program

5.2.1 Algorithmic rules of correct clocking

The OCaLustre clock checker ensures that the program, represented as an AST annotated with clocks
as described in section 4, respects a typing semantics that enforces the correct clocking of flows. This
semantics, derived from the typing semantics presented in section 3.2.4, takes into account the annotations
added to the OCaLustre program AST during its compilation in order to verify correct clocking.

The algorithmic clocking rules for expressions, in this version of the clock-annotated AST, are given
in figure 5.7. They are almost identical to those of non-annotated expressions, except for the clocking
rules of the unit value, a constant, or a type constructor, which take these annotations into account. For
example, whereas in its non-annotated version a constant was compatible with any clock type, here a
constant k annotated with a clock ck has the clock type ck :

C ` kck : ck
Const

L’ensemble des règles de cadencement qui concernent les autres catégories syntaxiques est donné dans
la figure 5.8. Ces règles de cadencement sont pour la plupart directement dérivées des règles présentées
en section 3.2.4, néanmoins la règle qui concerne l’application d’un nœud est plus complexe. Elle doit
tenir compte, comme nous l’avons décrit lors de la présentation du système des horloges d’OCaLustre,
du mécanisme d’application conditionnelle, ainsi que des diverses substitutions apportées aux noms des
variables dans les types d’horloges.
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C ` e : ck

C ` ()ck : ck
Unit

C ` kck : ck
Const

C ` Xck
i : ck

Constr

C(x) = ck
C ` x : ck

Var
C ` e : ck
C ` □ e : ck

Unop
C ` e : ck C ` e′ : ck

C ` e ^ e′ : ck
Binop

C ` e : ck C ` x : ck
C ` e when x : ck on x

When
C ` e : ck C ` x : ck

C ` e whennot x : ck onnot x
Whennot

C ` e⃗ : ck

C ` e : ck
C ` [e] : ck

One_E
C ` e : ck C ` e⃗ : ck′

C ` e, e⃗ : ck × ck′
Cons_E

C `ce ce : ck

C ` e : ck
C `ce e : ck

Exp
C ` e : ck C `ce ce : ck C `ce ce′ : ck

C `ce if e then ce else ce′ : ck
If

C ` x : ck C `ce ce : ck on x C `ce ce′ : ck onnot x
C `ce merge x ce ce′ : ck

Merge

Figure 5.7 – Clocking rules, in clock-annotated normal form, for expressions

To represent these substitutions, we introduce the judgment x⃗ ∼
S

e⃗ ▷ σ which states that, for a set of

supports S , a list of formal parameters x⃗, and a list of actual arguments e⃗, σ is the substitution of the
variable names present in the list of formal parameters of the application with the names of its actual
arguments.

The inductive rules related to this judgment are as follows :

y⃗ ∼
S

e⃗ ▷ σ

x ∈ S
x ∼

S

[
y
]
▷ {x 7→ y} Sub_E_in

x < S
x ∼

S
[e] ▷ ∅

Sub_E_notin

() ∼
S

[
()ck] ▷ ∅ Sub_E_unit

y ∼
S

[e] ▷ σ y⃗ ∼
S

e⃗ ▷ σ′

y, y⃗ ∼
S

e, e⃗ ▷ σ ⊕ σ′ Sub_E_list

For example, if a node f has the signature (x : •) → (y : • on x), then the application f z induces the
substitution of x by z for the instantiation of the type of f in this context : consequently, in f z, f has the
type • → • on z. We can therefore formally derive the judgment x ∼

{x}
z ▷ {x 7→ z}.

Because the output flows of a node may themselves be clocked by other output flows, it is also
necessary to substitute the names of the formal output parameters of a node with the actual names on
the left-hand side of the equality symbol in the equation corresponding to the node application. The
judgment y⃗ ∼

S
y⃗′ ▷σ therefore means that, for a set of supports S , σ is the substitution of the formal output

parameter names y⃗ by the actual output flow names y⃗′ (corresponding to the variable names on the
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C ` y⃗ : ck

C ` () : • NNil
C(y) = ck
C ` y : ck

NVariable
C ` y : ck C ` y⃗ : ck′

C ` y, y⃗ : ck × ck′
NList

H, C ` eqn

x⃗ ∼
S

e⃗ ▷ σ1 ck1 = σ1(ck′1[ck]) y⃗ ∼
S

y⃗′ ▷ σ2 ck2 = σ2 ⊕ σ1(ck′2[ck])

ck1 → ck2 = inst
(⃗e,y⃗′,ck)

(
∀•.(x⃗ :ck′1) S→ (y⃗ :ck′2)

) Inst

H(f ) = ∀ • .(x⃗ : ck)→ (y⃗ : ck′) S = carriers(ck) ++ carriers(ck′)

H ` f : ∀ • .(x⃗ : ck) S→ (y⃗ : ck′)
Sign

H ` f : ∀ • .(x⃗ : ck′1) S→ (y⃗′ : ck′2) ck1 → ck2 = inst
(⃗e,y⃗′,ck)

(
∀•.(x⃗ :ck′1) S→ (y⃗ :ck′2)

)
C ` e⃗ : ck1 C ` y⃗′ : ck2

H, C ` y⃗′ =
ck

f (⃗e)
App

C ` y : ck C `ce ce : ck
H, C ` y =

ck
ce

Expr
C ` y : ck C ` e : ck
H, C ` y =

ck
k fby e

Fby

C ` y : ck C ` e : ck C ` e1 : ck .. C ` en−1 : ck
H, C ` y =

ck
call f e e1 .. en−1

Call

H, C ` ⃗eqn

H, C ` eqn
H, C ` [eqn]

OneEqn
H, C ` eqn H, C ` ⃗eqn

H, C ` eqn; ⃗eqn
ConsEqns

H, C ` node : ω

H, C ` ⃗eqn C ` x⃗ : ck C ` y⃗ : ck′

H, C ` node f (x⃗) return (y⃗) = ⃗eqn : ∀ • .(x⃗ : ck)→ (y⃗ : ck′)
Node

H ` program

H ` ∅ EmptyProg
H, C ` node f (x⃗) return (y⃗) = ⃗eqn : ω (f : ω) ∪H ` ⃗nodes

H ` (C,node f (x⃗) return (y⃗) = ⃗eqn); ; ⃗nodes
ConsProg

Figure 5.8 – Clocking rules in the clock-annotated normal form (continued)
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left-hand side of the equality in the given equation). The inductive rules governing this judgment apply
to a different syntactic category than the previous ones : they handle lists of variable names y⃗, rather than
expressions e. These rules are as follows :

y⃗ ∼
S

y⃗′ ▷ σ

y ∈ S
y ∼

S
y′ ▷ {y 7→ y′} Sub_V_in

y < S
y ∼

S
y′ ▷ ∅

Sub_V_notin

() ∼
S

() ▷ ∅
Sub_V_nil

y ∼
S

y′ ▷ σ y⃗ ∼
S

y⃗′ ▷ σ′

y, y⃗ ∼
S

y′, y⃗′ ▷ σ ⊕ σ′ Sub_V_list

For example, if the node g has the signature (x : •) → ((y : •) × (z : • on y)), then in the equation
(a, b) = g(32) the type of the instance of g is • → (• × (• on a)) because a is the effective name used to refer
to the first output value of g. This example induces the judgment (y, z) ∼

{y}
(a, b) ▷ {y 7→ a}.

We also recall that the mechanism of conditional application of a node consists in replacing the base
clock in the node’s signature by a slower clock in order to slow down its execution. We denote by c⃗k[c]
the substitution of all occurrences of the base clock (•) by the clock c in c⃗k.
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ck[ck′]

•[ck′] ≡ ck′

(ck on x)[ck′] ≡ (ck[ck′]) on x
(ck onnot x)[ck′] ≡ (ck[ck′]) onnot x
(ck1 → ck2)[ck′] ≡ (ck1[ck′])→ (ck2[ck′])
(ck1 × ck2)[ck′] ≡ (ck1[ck′]) × (ck2[ck′])

Moreover, we provide the definition of a function carriers, which computes the list of supports
contained in a clock type :

carriers(ck)

carriers(•) ≡ ∅
carriers(ck on x) ≡ x :: carriers(ck)
carriers(ck onnot x) ≡ x :: carriers(ck)
carriers(ck1 → ck2) ≡ carriers(ck1) ++ carriers(ck2)
carriers(ck1 × ck2) ≡ carriers(ck1) ++ carriers(ck2)

To make the rule for node application easier to understand, we separate it into three distinct rules :

1. A first rule, Sign

H(f ) = ∀ • .(x⃗ : ck)→ (y⃗ : ck′) S = carriers(ck) ++ carriers(ck′)

H ` f : ∀ • .(x⃗ : ck) S→ (y⃗ : ck′)
Sign

allows us to retrieve the information necessary for typing the application. It states that, in a
global typing environment H, if the function f has the signature (x⃗ : ck)→ (y⃗ : ck′), and if the set S
corresponds to the supports in ck and ck′, then we can derive the judgment f : (x⃗ : ck) S−→ (y⃗ : ck′),
which associates the signature of f with its list of supports.

2. A second rule, the instantiation rule Inst :

x⃗ ∼
S

e⃗ ▷ σ1 ck1 = σ1(ck′1[ck]) y⃗ ∼
S

y⃗′ ▷ σ2 ck2 = σ2 ⊕ σ1(ck′2[ck])

ck1 → ck2 = inst
(⃗e,y⃗′,ck)

(
∀•.(x⃗ :ck′1) S→ (y⃗ :ck′2)

) Inst

states that, for a node with signature (x⃗ : ck′1) → (y⃗ : ck′2) with a set S of supports, if the
following conditions are satisfied :

— σ1 is the substitution of the formal parameter names x⃗ of the node by the names of its arguments
e⃗.

— The clock ck1 corresponds to the result of applying to ck′1 the substitution σ1 as well as the
substitution of the base clock by the conditional application clock ck of the node.

— σ2 is the substitution of the formal names y⃗ of the node’s output flows by the effective variable
names y⃗′ actually present on the left-hand side of the equality in the equation that applies the
node.
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— The clock ck2 corresponds to the result of applying to ck′2 the substitutions σ1 and σ2, as well as
the substitution of the base clock by the conditional application clock ck of the node call.

then the type ck1 → ck2 is a valid instance of the type of the node considered.

3. Finally, the third rule, App :

H ` f : ∀ • .(x⃗ : ck′1) S→ (y⃗′ : ck′2) ck1 → ck2 = inst
(⃗e,y⃗′,ck)

(
∀•.(x⃗ :ck′1) S→ (y⃗ :ck′2)

)
C ` e⃗ : ck1 C ` y⃗′ : ck2

H, C ` y⃗′ =
ck

f (⃗e)
App

combines the two previous rules : it states, for a node f , that if the type ck1 → ck2 is an instance
of the signature of f , and if the parameters of the application are of type ck1 and the returned
values are of type ck2, then the application y⃗′ = f (⃗e), whose conditional application clock is ck, is
well-clocked.

As an example, Figure 5.9 shows the derivation tree of the conditional application of the node count
with parameter expression 1 when c. In this example, no substitution between the parameter names and
the argument names is needed, since the signature of the node count contains no support. Nevertheless,
in order for the conditional application mechanism to be consistent with clock typing, the base clock • is
substituted by the clock of the expression 1 when c (i.e. (• on c)).

5.2.2 Extraction to OCaml of the clock checker

Once the clock typing rules for the annotated normal form have been defined, the preliminary step in
building a type checker relies on extracting the rules defined above into Coq. Using Ott’s Coq extraction
of the rules allows us to translate them into Coq inductives. For example, the following snippet shows the
inductive corresponding to the Coq extraction of the clocking rule associated with the application of a
binary arithmetic operator.

Inductive clk_exp : C → exp → clock → Prop :=
(...)

| Binop : forall (C:C) (e:exp) (op:operator) (e’:exp) (ck:clock),

clk_exp C e ck →
clk_exp C e’ ck →
clk_exp C (Ebinop e op e’) ck.

From the various rules that govern the well-clockedness of programs, described in the previous
section, Ott produces the following Coq inductives :

— clk_exp such that clk_exp C e ck corresponds to the judgment C ` e : ck .
— clk_cexp such that clk_cexp C ce ck corresponds to the judgment C ` ce : ck .
— Well_clocked_eq such that Well_clocked_eq H C eqn states that an equation is well-clocked in the

global environment H and the local environment C (i.e. H, C ` eqn ).
— Well_clocked_node such that Well_clocked_node H C node states that a node node is well-clocked in

the global environment H and the local environment C (i.e. H, C ` node ).
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However, the generation of inductive relations is not sufficient for our use case : we aim to implement a
type checker that must therefore be executable, so it can be integrated as a software stage in the compilation
sequence of an OCaLustre program. To obtain a computational and executable version of the various
clock typing rules, functional versions of these rules have also been implemented in Coq.

For example, the following excerpt of the recursive function clockof_exp is the Coq code correspon-
ding to the computation of the clock for the application of a binary operator :

Fixpoint clockof_exp (C : clockenv) (e:exp) :=

match e with

(...)

| Ebinop e1 op e2 ⇒
let c1 := clockof_exp C e1 in

let c2 := clockof_exp C e2 in

match c1,c2 with

| Some a, Some b ⇒ if clock_eqb a b then Some a else None
end

end.

It is therefore fundamental, in order to guarantee the correctness of our approach, that these executable
functions respect the typing semantics formally defined by the inductive rules given in this section. The
certification that these rules are respected relies on a proof, in Coq, of the equivalence between the
inductive versions and the functional versions of these rules. We have thus proved, in the Coq proof
assistant, the following equivalences :

— At the level of expressions : if, in a local environment C, an expression e is associated with the
clock ck in the inductive relation clk_exp, then the function clocko f _exp, applied to e, also returns
the clock ck :

∀ C e ck, clockof_exp C e = Some ck⇔ clk_exp C e ck

— This equivalence allows us to deduce that, at the level of control expressions, if, in a local envi-
ronment C, a control expression ce is associated with the clock ck in the inductive relation clk_exp,
then the function clocko f _cexp, applied to ce, also returns the clock ck :

∀ C e ck, clockof_cexp C e = Some ck⇔ clk_cexp C e ck

— From these relations, we can deduce that if, for a global clock typing environment H and a local
environment C, an equation eqn is well-clocked in the inductive version of the rules, then it is also
well-clocked in the functional version :

∀H C eqn, well_clocked_eq H C eqn⇔Well_clocked_eq H C eqn



142 Chapitre 5. OCaLustre Properties Formalized and Proved with Coq

— We can finally deduce that if a node node is well-clocked in the inductive version of the rules, then
it is also well-clocked in their functional version :

∀H C node, well_clocked_node H C node⇔Well_clocked_node H C node

The Coq sources representing all the definitions and proofs leading to this result are available online
[⚓1].

These properties, once formally proven, provide us with the assurance that our manually defined
executable functions respect the clocking semantics represented by the inductive rules originally passed
to Ott. Thus, any extraction of these functions into executable code will also preserve this same semantics.

The Coq functions are then extracted into standard OCaml functions. For example, the previous
excerpt that handled the clocking of a binary operator is converted into the following piece of OCaml
code :

let rec clockof_exp c = function

(...)

| Ebinop (e1, _, e2) ->

let c1 = clockof_exp c e1 in

let c2 = clockof_exp c e2 in

(match c1 with

| Some a ->

(match c2 with

| Some b -> if clock_eqb a b then Some a else None

| None -> None)

| None -> None)

The code extracted from Coq is subsequently linked with some glue code capable of converting
certain incompatible types produced by this extraction mechanism (for instance, Coq extracts strings into
character lists, which do not correspond to the base string type of the OCaml language). Finally, the
clock checker code is inserted into the compilation chain, and it is checked, for each node definition, that it
respects the clocking semantics of OCaLustre programs by applying the function well_clocked_node. If
this function returns the value false, the compiler then generates an error and the program compilation
is halted. The clock checker is enabled by the -check_clocks option of the OCaLustre compiler. For
example, checking the node merger (which simply applies its three parameters c, a, and b to the merge
operator) produces the following output :

$ ocamlc -ppx "ocalustre -check_clocks" tests/merger.ml

merger :: (c:base * a:(base on c) * b:(base onnot c)) -> (d:base)

Checking of merger : OK

The clock checker thus ensures that the clock type checker implemented in OCaLustre, which infers
the clocks of each equation, deduces for each of them a clock consistent with the synchronous clock
typing system. This checking provides an alternative to implementing a fully verified type checker : if the
OCaLustre clock type checker operates correctly, then the clock checker will always compute the value
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true. In cases where the clock checker returns the value f alse, this property can no longer be guaranteed.
For all the examples presented in this manuscript, as well as for the tests carried out during our work, the
clock checker confirms that the inference is correct. Ultimately, this checking could ensure that no absent
value is erroneously manipulated by the program during its execution. However, this property would
require connecting the operational semantics of the language with its static clock typing semantics, as
discussed in Section 3.2.5.
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Chapter Conclusion

The properties verified in this section provide guarantees about the programs produced. These
guarantees mainly concern the typing of the data manipulated by an OCaLustre program, whether in
terms of the standard typing of values or the clocking of the program’s various synchronous components.
Thanks to the Coq proofs of these properties, we can ensure that the typing of an OCaLustre program
provides the safety expected from the language specification. Such guarantees are particularly valuable
in a critical embedded context where user safety is at stake. Furthermore, additional static analyses,
which benefit from OMicroB’s portable approach, can help ensure the correct behavior of an embedded
program. In the next chapter, we present an analysis that makes it possible to bound the execution time
of an OCaLustre program. As in the approach adopted in this chapter, we will verify the method used
for this analysis with the help of Coq.
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6 Worst-Case Execution Time Calculation
of an OCaLustre Program

The virtual machine approach adopted in our work allows us to factorize several static analyses that
can be performed on programs independently of the targeted hardware architectures. Indeed, because
executable programs are represented in the form of bytecode, common to all implementations of the
virtual machine, these analyses can be carried out directly on the generated bytecode files, thereby
abstracting away from the hardware on which the program runs. In this chapter, we illustrate such an
analysis, which makes it possible to estimate the Worst-Case Execution Time (WCET) of an OCaLustre
program. The method used takes advantage of the very simple memory model of microcontrollers and
relies on the compositionality of the execution time of the program’s bytecode : analyzing the distinct
costs of each program instruction allows us to deduce its total cost. This analysis, which can easily be
adapted to the execution of a program on microcontrollers of different models or architectures, thus has
the advantage of being compatible with the portability of the virtual machine approach.

In the following, we present and formalize on an idealized bytecode the method used to measure the
worst-case execution time of an OCaLustre program, and we prove its correctness with the help of Coq.
This method is then applied to the actual OCaml bytecode instruction language using a software tool
named Bytecrawler, whose functioning we describe. Finally, we discuss the limitations of the compatibility
of WCET analysis with the compilation model previously described, and we present a dedicated mode of
OCaml code generation that makes it possible, without changing its semantics, to estimate the maximum
execution time of any OCaLustre program.

6.1 Formal Validation of the Method in Coq

In this section, we describe and formalize the method we adopt to perform the calculation of the worst-
case execution time of a bytecode program resulting from the compilation of an OCaLustre program.
For the sake of simplification, both the formalization and the correctness proof of the method are carried
out on an idealized bytecode language, reduced to a few imperative instructions. We conjecture that the
results obtained on this idealized bytecode language can be transposed to the concrete subset of OCaml
bytecode instructions generated by the compilation of an OCaLustre program.

6.1.1 Definition of an Idealized Bytecode Language

The idealized bytecode language contains the following seven instructions :
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instr ::= Init x v | Assign x y | Add x y | Sub x y | Branch v | Branchif x v | Stop

— The Init instruction initializes a variable with a value, for example x = 3.
— The Assign instruction updates the value of a variable with the value of another variable (x = y) 1.
— The Add instruction increments the value of a variable x by the value of a variable y (i.e. x += y).
— The Sub instruction decrements the value of a variable x by the value of a variable y (i.e. x -= y).
— The Branch instruction performs a jump in the code.
— The Branchif instruction performs a jump provided that a given variable is different from 0.
— The Stop instruction terminates the execution of the program.

The values manipulated by the language are only integers :

values, v,w ::= int_literal | v + w | v − w

A program state σ corresponds to a triplet containing the program code P (a structure that associates
each address with the corresponding instruction of the language), a program counter pc, and a memory
M (a structure associating variables with integer values) :

σ ::= (P, pc,M)

The small-step operational semantics rules of this language are defined in Figure 6.1.

Execution Traces

In the following, we consider the sequence of all states encountered during the execution of a program
written in this language. We call this sequence an execution trace.

Definition 6.1.1 (Execution Trace). An execution trace T of a program is a sequence of states where each state
is the image of the previous one by a transition in the operational semantics of the idealized language.

Our method applies only to finite execution traces of a program. Indeed, it would not be possible
to analyze programs whose execution is infinite, since by definition their execution time would not be
bounded.

Definition 6.1.2 (Finite Execution Trace). An execution trace T is finite (denoted f inite(T )) if it ends with the
Stop instruction.

During program execution, all variable values are known, and the execution trace is unique. Moreover,
when execution terminates correctly, the last instruction of the associated trace is the Stop instruction.
Such a trace is called a deterministic execution trace.

Definition 6.1.3 (Deterministic Execution Trace). The function run, applied to a state σ, returns the determi-
nistic execution trace whose initial state is σ :

1. Access to a variable is performed in constant time.
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σ −→ σ′

P[pc] = Init x v(
P, pc,M

) −→ (P, pc + 1,M[x := v]
)

P[pc] = Assign x y M[y] = v(
P, pc,M

) −→ (P, pc + 1,M[x := v]
)

P[pc] = Add x y M[x] = v M[y] = w(
P, pc,M

) −→ (P, pc + 1,M[x := v+w]
)

P[pc] = Sub x y M[x] = v M[y] = w(
P, pc,M

) −→ (P, pc + 1,M[x := v−w]
)

P[pc] = Branch v(
P, pc,M

) −→ (P, v,M)

P[pc] = Branchif x v M[x] = 0(
P, pc,M

) −→ (P, pc + 1,M
)

P[pc] = Branchif x v M[x] , 0(
P, pc,M

) −→ (P, v,M)

Figure 6.1 – Operational semantics of the idealized language

run(σ) = T

P[pc] = Stop

run(
(
P, pc,M

)
) = [
(
P, pc,M

)
]

σ −→ σ′ run(σ′) = T
run(σ) = σ :: T

For example, consider the following program P :

[0 : Init "x" 4 ; 1 : Branchif "x" 3 ; 2 : Branch 0 ; 3 : Add "x" "x"; 4 : Stop]

The sequence of states T thus constitutes an execution trace of program P, with the initial state
composed of P, a program counter initialized at 0, and an empty memory (i.e. (P, 0,∅)) :

T = run((P, 0,∅)) = [(P, 0,∅) ; (P, 1, [x = 4]) ; (P, 3, [x = 4]) ; (P, 4, [x = 8])]

Costs

We associate a cost with each instruction of the language. This cost corresponds to the execution time
(in number of cycles) of each instruction. Our analysis thus depends on a cost function costinstr, which
associates an integer value with each instruction :
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costinstr : instr→ nat

The cost coststep of a transition is equal to the cost of the corresponding instruction :

coststep(P, pc,M) = costinstr(P[pc])

And the cost cost of an execution trace corresponds to the sum of the values returned by the cost
function for each instruction in this trace :

cost(T ) =
∑
σ∈T

coststep(σ)

For example, we represent the cost function of the instructions of the idealized language by the
following table, which associates an arbitrary cost with each instruction :

Instruction Cost (cycles)

Init 4

Assign 2

Add 5

Sub 7

Branch 2

Branchif 3

Stop 1

The cost of the execution trace defined in the previous example, which corresponds to the sum of the
instruction costs in that trace, is therefore :

cost(T ) = coststep(P, 0,∅) + coststep(P, 1, [x = 4]) + coststep(P, 3, [x = 4]) + coststep(P, 4, [x = 8]);

= costinstr(P[0]) + costinstr(P[1]) + costinstr(P[3]) + costinstr(P[4])

= costinstr(Init "x" 4) + costinstr(Branchif "x" 3) + costinstr(Add "x" "x") + costinstr(Stop)

= 13 cycles

6.1.2 Variable Erasure

In a real, non-trivial program, it is common for the values of certain variables not to be known
prior to program execution. Such values may, for example, result from the use of operators with a non-
deterministic semantics [CL14], or more commonly, come from the execution environment of the program
(user inputs, signals, etc.). In our application context, many values manipulated by the programs indeed
originate from the electronic environment of the physical setups that contain a microcontroller : for
instance, when the latter reacts to the value of a temperature sensor, this value is unknown at the time of
program compilation. It is therefore not always possible to statically and deterministically evaluate the
complete execution path of a given program, since values from its environment may condition a branch
in the program’s control flow : we thus cannot predict which path the program will take at runtime
when the value of a condition is not statically known. This non-determinism, introduced by polling the
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program’s environment, makes it difficult to compute the program’s total execution time : depending on
which path is taken at runtime, the execution duration may vary significantly.

To be able to statically bound the execution time of a program, it is therefore necessary to reason
about an abstract representation of this program, by statically representing all possible execution paths.
From the resulting set, it is possible to deduce an execution time value that upper-bounds the execution
time of all the elements of this set.

The abstract representation of a program then manipulates variables whose values are not known
at compilation time. To do this, we extend the grammar of values of the idealized language so as to
support unknown variable values, which we represent using the symbol > (top) to indicate that they may
correspond to any value :

values, v,w ::= int_literal | v + w | v − w | >

The program’s memory may thus associate some variables with unknown values. We call such a
memory an erasure, where all or part of the variables are associated with the value >.

Definition 6.1.4 (Erasure). The following inductive rules define the erasure of a memory :

Md M′

∅d ∅

Md M′

M[x := v]d M′[x := v]

Md M′

M[x := v]d M′[x := >]

A memory M′ is therefore an erasure of a memory M (denoted Md M′) if and only if M and M′ share
the same set of variables, but some values of the variables known in M are unknown in M′.

In the following, we will use the same notation to represent a state σ′ whose memory corresponds to
an erasure of the memory contained in a state σ. If the memory of σ′ is an erasure of the memory in σ, we
then write σd σ′.

Since the cost of a transition depends only on the program and the program counter, it does not
change after erasure of the state’s memory :

Lemme 6.1.1. ∀ σ σ′, σd σ′ ⇒ coststep(σ) = coststep(σ′)

By extension, the cost of an erased execution trace is identical to the cost of a non-erased trace :

Lemme 6.1.2. ∀ T T ′, T d T ′ ⇒ cost(T ) = cost(T ′)

6.1.3 Non-deterministic Evaluation

The appearance of unknown values (>) introduces non-determinism into the semantics of the lan-
guage. Indeed, if for a conditional branch instruction (Branchif x v), the value of the condition x is erased,
then it is no longer possible to know statically whether the program should follow the path corresponding
to the case where x is true (i.e. x ≥ 1), or the one where x is false (i.e. x = 0). The total execution cost of a
program can therefore, as soon as multiple execution paths are possible, diverge considerably depending
on which path is taken. For example, consider the following program :
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P = [Init "a" 12 ; 1 : Branchif "x" 5 ; 2 : Init "y" 42 ; 3 : Branch 4 ; 4 : Stop]

If the value of the variable x is not known at program compilation (i.e. M[x] = >), then it is not
possible to predict its exact execution path at runtime. From the branch conditioned by the value of x,
two different execution paths are possible :

(P, 0,M)

(P, 1,M[a := 12])

(P, 5,M[a := 12]) (P, 2,M[a := 12])

(P, 3,M[a := 12][y := 42])

(P, 4,M[a := 12][y := 42])

x , 0x = 0

The cost of P is therefore potentially different depending on the actual path taken : if we keep the
same cost function as in the previous example, then the positive branch (the one that jumps directly to
pc = 5) has a cost of 8, while the negative branch has a cost of 14.

To make it possible to compute an upper bound of a program’s execution cost, we introduce the
notion of the maximum cost of an execution. This cost is computed by summing the costs of the various
states encountered while following the transitions of the operational semantics of the idealized language.
In the presence of a branch whose condition is unknown, the maximum cost is calculated by following
the transition toward the branch with the higher cost.
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Definition 6.1.5 (Maximum Cost). The function costmax computes the maximum cost of a program, starting
from a state σ :

costmax(σ) = c

P[pc] = Stop

costmax(
(
P, pc,M

)
) = costinstr(Stop)

σ −→ σ′ coststep(σ) = c costmax(σ′) = k

costmax(σ) = c + k

P[pc] = Branchif x v M[x] = >
coststep(

(
P, pc,M

)
) = c costmax(

(
P, pc + 1,M

)
) = k costmax((P, v,M)) = k′

costmax(
(
P, pc,M

)
) = c +max(k, k′)

By abuse of notation, for readability, we use the equality symbol in the previous rules. However, it
should be noted that the function costmax is partial, and is defined in Coq as an inductive relation. The
definition of this function allows us to state the following theorem, which asserts that the maximum
execution cost, computed regardless of the erasure applied to a program’s initial memory, constitutes an
upper bound of the program’s actual execution cost.

Theorem 6.1.1 (Correctness). ∀ σ T , run(σ) = T ⇒ ∀ σ′, σd σ′ ⇒ costmax(σ′) ≥ cost(T )

This theorem forms the basis of the WCET calculation of our programs : if the cost function associates
each instruction with its execution time, and if the initial memory associates each variable with the value
>, then the corresponding maximum cost is an upper bound of the program’s worst-case execution time
(since a state whose memory contains only unknown values is an erasure of all possible initial states).

The remainder of this section is devoted to the proof of this theorem, which establishes the correctness
of the WCET calculation method.

6.1.4 Proof of Correctness

The Coq sources containing the various formal representations of the notions introduced in this
section, as well as the proofs of the associated lemmas and theorems, are available online [⚓1].

Non-deterministic Semantics of the Idealized Language

As illustrated earlier, the introduction of unknown values (>) in the idealized language induces non-
determinism in its execution : some erasures may lead to different execution traces which, although all
valid, may vary greatly in cost. To represent this non-determinism, we present a non-deterministic semantics
for the idealized language, capable of handling unknown values. This semantics, whose evaluation rules
are described in Figure 6.2, corresponds both to the direct transposition of the deterministic rules defined
in Figure 6.1 2, as well as the addition of two rules to handle the case where the condition of a conditional
branch instruction (Branchif) is unknown. The premises of the conditional branch rule handling the false
case and those of the rule handling the true case are indistinguishable when the value of the branch
condition is unknown. The introduction of the notion of values unknown at compilation time, combined

2. With the exception that addition and subtraction operations are extended to return the value > as soon as one of the
operands is unknown : for example, x +> = >. To denote this behavior, arithmetic operators will be written in bold.
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with the addition of these two rules, thus provides the expected non-deterministic character to the
semantics of the instructions of the idealized language.

σ⇝ σ′

P[pc] = Init x v(
P, pc,M

)
⇝
(
P, pc + 1,M[x := v]

)
P[pc] = Assign x y M[y] = v(

P, pc,M
)
⇝
(
P, pc + 1,M[x := v]

)
P[pc] = Add x y M[x] = v M[y] = w(

P, pc,M
)
⇝
(
P, pc + 1,M[x := v+++ w]

)
P[pc] = Sub x y M[x] = v M[y] = w(

P, pc,M
)
⇝
(
P, pc + 1,M[x := v−−− w]

)
P[pc] = Branch v(

P, pc,M
)
⇝ (P, v,M)

P[pc] = Branchif x v M[x] = 0(
P, pc,M

)
⇝
(
P, pc + 1,M

)
P[pc] = Branchif x v M[x] , 0(

P, pc,M
)
⇝ (P, v,M)

P[pc] = Branchif x v M[x] = >(
P, pc,M

)
⇝
(
P, pc + 1,M

)
P[pc] = Branchif x v M[x] = >(

P, pc,M
)
⇝ (P, v,M)

Figure 6.2 – Non-deterministic semantics of the idealized language

Preservation of Transitions and Traces

Our reasoning concerns the maximum cost of the execution traces of a program whose memory
contains erased variables : values coming from the environment, unknown prior to program execution.
However, during the actual execution of the program, the memory contains no unknown values, and
the corresponding execution trace is the unique sequence of transitions in the deterministic operational
semantics of the idealized language. It is therefore important, in order for reasoning applied to the
program’s non-deterministic traces to be meaningful, to ensure that the actual execution trace of the
program is indeed contained within the set of considered non-deterministic traces. In other words,
reasoning on erased versions of the memory can only be useful if, among all valid erased traces computed,
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one of them corresponds to the actual trace of the program (otherwise, nothing could be concluded
regarding the program’s real execution).

We begin by reasoning at the level of the language semantics transitions. To this end, we first define
a lemma stating that a transition in the deterministic semantics persists after being embedded into
the non-deterministic semantics of the idealized language. This property is straightforward, since the
non-deterministic semantics corresponds to an extension of the deterministic semantics of the idealized
language :

Lemme 6.1.3. ∀ σ σ′, (σ −→ σ′)⇒ (σ⇝ σ′)

Moreover, every transition is preserved after erasure of the program’s memory : if there exists a
transition from a state σ1 to a state σ2 in the non-deterministic semantics, then for any erasure σ′1 of the
original state there exists a transition leading to a state σ′2, and the latter is an erasure of σ2 :

Lemme 6.1.4. ∀ σ1 σ2 σ′1, (σ1⇝ σ2) ∧ (σ1
d σ′1)⇒ (∃ σ′2, (σ′1⇝ σ

′
2) ∧ (σ2

d σ′2))

By combining the two previous lemmas, we can then deduce that every transition in the determi-
nistic semantics is preserved after embedding into the non-deterministic semantics, even after partial or
complete erasure of the memory of the original state :

Lemme 6.1.5 (Preservation). ∀ σ1 σ2 σ′1, (σ1 −→ σ2) ∧ (σ1
d σ′1)⇒ (∃ σ′2, (σ′1⇝ σ

′
2) ∧ (σ2

d σ′2))

This property is illustrated schematically in Figure 6.3.

σ1 σ2

σ′1 σ′2

Figure 6.3 – Transition preservation

Finally, as illustrated in Figure 6.4, the extension of the above properties to execution traces is straight-
forward.

σ1 σ2 . . . σn

σ′1 σ′2 . . . σ′n

. . .σ′′1 σ′′2 σ′′n

Figure 6.4 – Trace preservation

Upper Bound on the Cost of the Program’s Actual Execution

To verify that the function costmax indeed refers to the most costly execution trace of the program, we
formally define such a trace, called the maximal execution trace.
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Definition 6.1.6 (Maximal Trace). The function runmax, which computes the maximal execution trace, is defined
inductively as follows :

runmax (σ) = T

σ −→ σ′ runmax (σ′) = T
runmax (σ) = (σ :: T )

P[pc] = Stop

runmax
((

P, pc,M
))
= [
(
P, pc,M

)
]

P[pc] = Branchif x v M[x] = >
runmax

((
P, pc + 1,M

))
= T runmax ((P, v,M)) = T ′ cost(T ) > cost(T ′)

runmax
((

P, pc,M
))
= (
(
P, pc,M

)
:: T )

P[pc] = Branchif x v M[x] = >
runmax

((
P, pc + 1,M

))
= T runmax ((P, v,M)) = T ′ cost(T ) ≤ cost(T ′)

runmax
((

P, pc,M
))
= (
(
P, pc,M

)
:: T ′)

As with costmax, the function runmax is a partial function defined inductively in Coq.

The maximal trace contains the same states as those considered by the function costmax : it follows
the paths for which the total sum of costs is the greatest. Its cost is therefore identical to the maximum
execution cost :

Lemme 6.1.6. ∀ σ, costmax(σ) = cost(runmax(σ))

By definition, the maximal trace is a finite trace. Moreover, its cost is greater than that of any other
finite trace starting from the same state :

Lemme 6.1.7. ∀ σ T k, f inite(σ :: T )⇒ costmax(σ) = k⇒ k ≥ cost(σ :: T ))

By applying the preservation lemma to execution traces, we then derive the main property of the
correctness proof of our method : the cost of the maximal execution trace is greater than the cost of any
finite trace starting from the same state, even when considering an erasure of its memory.

Lemme 6.1.8. ∀ σ T k, f inite(σ :: T )⇒ ∀ σ′, σd σ′ ⇒ costmax(σ′) = k⇒ k ≥ cost(σ :: T )

Since the deterministic trace is finite, the combination of the previous lemmas finally allows us to
conclude with the correctness theorem, which states that the maximal cost of a program, estimated from
an erasure of its initial memory, is an upper bound of the program’s actual execution cost :

Theorem 6.1.2 (Correctness). ∀ σ T k, run(σ) = T ⇒ ∀ σ′, σd σ′ ⇒ costmax(σ′) = k⇒ k ≥ cost(T )

6.2 Application to the WCET Calculation of an OCaLustre Program : the
Bytecrawler Tool

The method for calculating worst-case execution time described in the previous section applies to an
idealized language limited to a few instructions, but which nonetheless allows, through its branching
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instructions, a program to loop during its execution. The absence of non-statically bounded loops in
the program is, however, an essential condition for ensuring the finiteness of the traces considered :
otherwise, some erasures of memory 3 could lead to infinite execution of the static analyzer (which
would then be indefinitely computing the execution trace of maximal cost of the program). The analysis
described in the previous section was therefore only suitable for finite traces, requiring that the program
not loop indefinitely. Our analysis is thus applicable only under the condition that we can guarantee that
no unbounded loops or recursive calls are possible in the considered programs.

During the compilation of OCaLustre, each node is converted into a non-recursive OCaml function
and, although the main program is executed in a main loop where one iteration is performed at each
synchronous instant, no nested loops are executed within a single instant : the program simply computes,
instantaneously, output values from input values. The execution traces of a synchronous instant are
therefore finite, and under these conditions, it is possible to adapt to OCaLustre the analyses formalized
in the previous section, applying them not to the idealized language, but to the instruction set of the
OCaml virtual machine, since this is the target (after an initial conversion into standard OCaml code) of
the OCaLustre program.

Although more numerous and potentially more powerful, the instructions of the OCaml virtual
machine generated by OCaLustre are comparable to those of the idealized language : similarly, some
of them perform reference value updates (SETFIELD), arithmetic computations (ADDINT), or conditional
branches (BRANCHIF). The analyses carried out on the idealized language are therefore transposable to
the instructions of the OCaml virtual machine, and the calculation of the worst-case execution time of a
synchronous instant of an OCaLustre program then consists, as in the analysis of the idealized language,
of computing the maximal execution cost of the synchronous instant. This cost thus constitutes the
worst-case execution time of one instant of the program.

It should be noted that the analysis presented here is valid because the microcontrollers we consider
have very simple memory models. Indeed, the absence of cache systems makes the duration of each
instruction predictable [BN94], without having to consider scenarios where memory accesses could vary
in cost, and ensures the execution times, in number of cycles, of the different instructions of the language.
In this sense, the considered targets are said to be free of timing anomalies [RWT+06], which enables the
compositionality of execution time analyses.

6.2.1 Instruction Cost Calculation

When formalizing the worst-case execution time analysis, we discussed the existence of a specialized
cost function, associating an integer value with each instruction of the idealized language. In the OCa-
Lustre execution context, it is therefore necessary to use such a function that associates each instruction of
the virtual machine with a maximal execution time, in order to deduce an upper bound on the execution
time of the complete program. To this end, we leverage existing static analyzers capable of assigning a
maximum number of cycles to a compiled program. For illustration, we used the software tool Bound-T
[HS02], a memory and execution-time analyzer capable of computing the WCET of a program compiled
for an AVR microcontroller.

Our approach consisted of having Bound-T compute the worst-case execution time of each code block
responsible for interpreting an instruction of the OMicroB virtual machine. In this way, Bound-T allows

3. For example, the erasure of the variable conditioning the execution of a loop iteration.
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us to associate with each virtual machine instruction a value corresponding to the maximum number of
machine cycles required for its execution. It should be noted that the execution time of certain OCaml
virtual machine instructions depends partly on the value of one of their parameters (for example, the
instruction APPTERM n v executes n iterations of a loop in the interpreter’s associated code). One way of
handling such instructions is to calculate their cost when their parameter is set to the largest possible
value. However, this method results in an upper bound potentially far from reality. In order to assign
costs to each instruction more precisely, we recompute the costs of such instructions multiple times by
providing different fixed values as their parameters. This method is slower to perform, but it only needs
to be done once : once Bound-T has been executed for each virtual machine instruction, the tool is no
longer needed, since each OCaml bytecode program will contain only a subset of this instruction set
whose costs we have precomputed.

6.2.2 Bytecrawler : an Abstract Bytecode Interpreter

Once the Bound-T analysis is complete, we have at our disposal a complete table representing the
virtual machine instructions and their cost (in number of cycles). An excerpt of this table, generated for
the AVR ATmega2560 microcontroller for a 16-bit version of OMicroB, is reproduced in Figure 6.5. This
table constitutes the cost function described in the previous section. It is then possible to replicate the
maximal cost trace calculation method, considering that absent values (>) correspond to the results of
calls to C primitives (via CCALL instructions) used to communicate with the environment.

We therefore propose a static analysis tool, named Bytecrawler, which executes the program in the same
manner as the function costmax described abovefor example, by exploring both branches of a conditional
in order to deduce the one with the maximum cost. Bytecrawler thus makes it possible to compute, by
accumulating the values provided by the cost function calculated by Bound-T, the cost (in number of
cycles) of the maximal execution trace of an OCaLustre instant. By extending the result of the correctness
theorem to the instruction language of the OCaml virtual machine, we can deduce that the cost thus
obtained corresponds to an estimate of the worst-case execution time of a synchronous instant of the
OCaLustre program.

The wcet function in Figure 6.6 is a simplified excerpt of the function at the core of Bytecrawler : it
evaluates a program by following the standard semantics of OCaml bytecode instructions, while also
being capable of handling unknown variable values, resulting from calls to C input/output primitives.

In addition to associating a number of cycles with each instruction of the OCaml virtual machine, it is
also necessary to calculate the cost of all the input/output primitives integrated into the virtual machine’s
standard library. These primitives, written in C, are generally compatible with analyzers such as Bound-T.
Just as the instruction set does not change over time, the input/output primitivesbeing very low level
(often consisting simply of writing or reading values on the microcontroller pins)are not expected to
change from one program to another. The tool Bytecrawler must therefore, whenever it encounters a
CCALL instruction invoking a primitive, consult a second table that associates each C primitive name with
its estimated execution time. A developer wishing to define custom C primitives must then provide their
associated costs in this table.

The approach used by Bytecrawler offers a significant advantage over traditional WCET tools designed
for programs compiled into native code : since the costs associated with each virtual machine instruction
are fixed, they can be reused to analyze the cost of other programs, without forcing the programmer
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Bytecode instruction Cost (in cycles)

ACC 46

PUSH 43

PUSHACC 74

POP 42

ASSIGN 52

ENVACC 50

PUSHENVACC 78

APPLY 50

RETURN 85

GETFIELD 50

SETFIELD 67

GETVECTITEM 54

SETVECTITEM 69

BRANCHIF_1B 36

BRANCHIF_2B 46

BRANCHIF_4B 67

CONST0 25

ADDINT 51

SUBINT 51

MULINT 59

Figure 6.5 – Instruction bytecode cost table computed by Bound-T (excerpt)

let rec wcet state =
let state’ = {state with pc = state.pc + 1} in
let instr = state.instrs.(pc) in
cost instr + match instr with
| CONST i -> wcet {state’ with accu = Int i}
| BRANCH ptr -> wcet {state with pc = ptr}
| BRANCHIF ptr ->
(match state.accu with
| Int 0 -> wcet state’
| Int _ -> wcet {state with pc = ptr}
| Unknown -> max (wcet {state with pc = ptr}) (wcet state’))
| ADDINT ->
(match state.accu, state.stack with
| Int x, (Int y)::s -> wcet {state’ with accu = Int (x+y); stack = s}
| _, _::s -> wcet {state’ with accu = Unknown ; stack = s})
| C_CALL1 _ -> wcet {state’ with accu = Unknown}
| STOP -> 0

Figure 6.6 – Excerpt of the WCET calculation function
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to rerun the sometimes complex machinery of an analyzer such as Bound-T after every change to the
program. Moreover, the WCET of a program can be computed for several different microcontroller
models, as long as Bytecrawler is provided with a bytecode instruction cost table adapted to each of
these models. Such factorization of analyses is particularly valuable in the context of development for
embedded systems, where the targets (circuit, type of microcontroller, . . . ) may evolve as needs change.

6.2.3 Dedicated Mode of the OCaLustre Compiler

Since the virtual machine used relies on a garbage collector, the calculation of these costs could be
inaccurate. Indeed, when allocating a new value in the heap, the memory reclamation algorithm can
potentially be triggered, and several machine cycles may be consumed until it completes its execution.
If not taken into account, this unpredictable triggering of the garbage collector can lead to errors in the
WCET calculation of a program. Several methods can be employed to account for the existence of such
an automatic memory management mechanism : one of them consists in simply assuming that a full
memory collection is executed at each heap allocation. This over-approximation makes it possible to
correctly compute an upper bound of the execution time of a synchronous instant, but it lacks precision,
as it is unrealistic to assume that the garbage collector triggers so frequently.

It is interesting to note that, in the context of OCaLustre compilation, the values requiring allocation
in the heap (typically, registers resulting from the use of the operator ≫ ) are declared during the
initialization phase of the node : these values represent the environment of the closure generated by
the compilation of a node. For example, in the following node, only the register value used to store the
previous value of the expression c + 1 needs to be preserved in memory :

let%node count () ~return:c =

c = (0 ≫ (c + 1))

And this characteristic becomes apparent after compilation : the variable c_fby is the only one present
in the environment of the closure returned by the function count :

let count () =

let c_fby = ref 0 in

fun () ->

let c = !c_fby in

c_fby := c + 1;

c

As a result, it is possible to consider that, in the case where only base-type values are used (such as
integers, floats 4, or booleans), the number of values to be allocated in memory for the execution of a node
is known prior to program execution. Thus, if the necessary registers are allocated before the execution
of the OCaLustre program, no new allocation will be performed during the execution of the instant. This
would make it possible to claim that it is not necessary to account for the time taken by the garbage

4. Thanks to our representation of values in OMicroB, floats do not, in fact, need to be allocated on the heap
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collector in the calculation of the worst-case execution time of the synchronous instant, since no heap
allocation is performed in that instant.

Nevertheless, the compilation method described in Section 4.4 is not entirely compatible with this
statement : the compiled code of a node may indeed contain tuples corresponding to its parameters as
well as its output flows. These tuples are therefore allocated in the heap at each instant, and the question
of triggering the garbage-collection algorithm arises once again whenever a node returns and/or receives
more than one flow.

For example, consider the following node :

let%node triple (x) ~return:(a,b,c) =

a = x;

b = x + 1;

c = 42

This node, when compiled, generates an OCaml function that produces a closure, which in turn
induces the creation of a triple (a,b,c)whose memory representation leads to a heap allocation at each
synchronous instant :

let triple () =

fun x ->

let a = x in

let b = x + 1 in

let c = 42 in

(a,b,c)

Thus, the analysis presented in this chapter is only compatible with the compilation model described
in Section 4.4 under the condition that the considered nodes do not have multiple input or output
parameters. This strong limitation seems too restrictive to make Bytecrawler truly usable on non-trivial
programs. Consequently, in order to avoid such allocations occurring during an instant, we present
an alternative compilation scheme for OCaLustre nodes. This new compilation method preserves the
semantics of the OCaLustre language, but this time allows us to guarantee that no memory allocation is
performed during a synchronous instant, regardless of the shape of the nodes.

In this alternative compilation scheme, each node n leads to the definition of an OCaml type n_state
corresponding to the state of an instance of that node. This state contains mutable registers corresponding
to the node’s outputs and to the internal registers necessary for its execution (such as those resulting
from the use of the followed-by operator) :

type (’a, ’b, ’c) triple_state = {

mutable triple_out_a: ’a ;

mutable triple_out_b: ’b ;

mutable triple_out_c: ’c }
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The code of the node is then split into two distinct functions. The first is an initialization function, which
corresponds to the allocation of the node’s state. Since at this stage of compilation the types of the values
have not yet been inferred, the value Obj.magic () is used again, except for constant flows (initialized
with their value), or equations of the form k ≫ e (which are initialized with the constant k). The role
of Obj.magic () here is only to reserve on the heap the space needed to store the mutable state of the
node : it will never be evaluated during the execution of the synchronous program.

let triple_alloc x = {

triple_out_a = Obj.magic ();

triple_out_b = Obj.magic ();

triple_out_c = 42 }

This function generates the initial state of the node’s registers. Following a state-passing style of
execution, the internal state of the program is then a parameter of the node’s step function, which
computes at each instant the values of the flows defined by the node :

let triple_step state x =

let a = x in

let b = x + 1 in

let c = 42 in

state.triple_out_a ← a;
state.triple_out_b ← b;
state.triple_out_c ← c

This function is responsible, at each instant, for updating (through side effects) the values of the
different variables present in the node’s state. Since the node’s state is a record type whose fields are
mutable, each of these fields is allocated when the state is generated, and no new memory allocation
occurs in subsequent instants. Thanks to this execution model, which generates code with more imperative
aspects, the WCET calculation of an instant can thus be applied to the generated n_step function.

The code of the main function of the generated OCaml program, compatible with this compilation
mode, has the following form :

let () =

(* generation of the main node’s state *)

let _st = triple_alloc () in

while true do

(* reading inputs *)

let x = input_triple_x () in

(* executing the node *)

triple_step _st x;

(* writing outputs *)

output_triple _st.triple_out_a _st.triple_out_b _st.triple_out_c

done
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The -na option of the OCaLustre compiler enables the non-allocating compilation mode described in
this section.

6.2.4 Illustrative Example

In this section, we illustrate the operation of Bytecrawler on a short example. The OCaLustre program
of this example is reduced to a single node named count, which represents a counter : at each synchronous
instant, it computes the successor of the integer computed at the previous instant. In addition, this counter
can be reset to zero whenever the reset parameter of the node is true.

The code of this node (on the left), as well as the set of bytecode instructions into which this node
is translated following the compilation of OCaLustre into an OCaml program and then the standard
compilation of the latter (on the right 5), are presented below :

let%node count reset ~return:c =

c = (0 ≫ if reset then 0 else (c + 1))

L1: GRAB 1

ACC 0

GETFIELD 0

PUSH

ACC 2

BRANCHIFNOT L7

CONST 0

BRANCH L6

L7: ACC 0

OFFSETINT 1

L6: PUSH

ACC 1

PUSH

ACC 3

SETFIELD 1

ACC 0

PUSH

ACC 3

SETFIELD 0

CONST 0

RETURN 4

We now declare two OCaml functions responsible for handling the inputs and processing the outputs
of this synchronous program. The first defines the input value of the node (reset) as the result of the test
that checks whether pin number 0 of port B is poweredfor example, if a push button connected to this
pin has been pressed :

(* input function *)

let input_count_reset () =

read_bit PORTB PB0

L4: CONST0

PUSH

CONST1

CCALL caml_avr_read_bit, 2

RETURN1

Since the value returned by reading this pin (via the call to the primitive caml_avr_read_bit) cannot be
known at compilation time, it will be represented in Bytecrawler as an unknown value (>).

5. The -dinstr option of the standard compiler allows the display of this labeled bytecode.
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For the sake of simplicity, we declare that the second function, which is supposed to handle the value
c computed by the synchronous instant, does nothing, that is, it simply computes the value unit :

(* fonction de sortie *)

let output_count c = ()

L3: CONST 0

RETURN 1

After initializing the state of the synchronous program, according to the compilation model described
in the previous section, the OCaml program repeatedly reads the program input, calls the step function of
the synchronous instant, and calls the function handling its outputs. In order for Bytecrawler to recognize
in the bytecode where each synchronous instant begins and ends, the program loop is replaced, for the
purpose of WCET analysis, by calls to the primitives begin_loop and end_loop :

let () =

let _st = count_alloc () in

begin_loop ();

let reset = input_count_reset () in

count_step _st reset;

output_count _st.count_out_cpt;

end_loop ()

The bytecode associated with the code enclosed by the calls to begin_loop and end_loop is then as
follows :

CCALL begin_loop, 1

CONST 0

PUSH

ACC 5

APPLY 1

PUSH

ACC 0

PUSH

ACC 2

PUSH

ACC 4

APPLY 2

ACC 1

GETFIELD 1

PUSH

ACC 5

APPLY 1

CONST 0

CCALL end_loop, 1

Bytecrawler executes the program from the very first bytecode instruction, but begins counting the
costs of the instructions encountered only from the call to the begin_loop primitive, and continues until
the call to end_loop, thereby making it possible to compute the cost (in cycles) of the synchronous instant.
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Thus, with an instruction cost table computed by Bound-T for an ATmega2560, the maximal number of
cycles estimated by Bytecrawler is 3080. Since such a microcontroller has a clock frequency of 16 MHz, the
worst-case execution time of one synchronous instant of this program is therefore 1.92×10−4 seconds (192
µs). Hence, if the interval between two changes of the state of pin PB0 is greater than 192 microseconds,
the synchronous hypothesis holds.

Chapter Conclusion

In this chapter, we leveraged the factorization of analyses provided by representing programs in
bytecode form to compute the worst-case execution time of a program. The proof of correctness of
the method ensures its viability, and a software tool following this method has been implemented. Of
course, one of the processes required to certify the operation of this tool would be to formalize and
prove the method not only on the idealized bytecode presented in this section, but on the actual subset
of the OCaml bytecode instruction language produced by the compilation of OCaLustre. Although this
would be a significant undertaking due to the number of OCaml bytecode instructions, this transposition
nonetheless appears relatively straightforward.

Furthermore, the main advantage of the method lies, once again, in its portability : the analyses related
to the bytecode and those specific to the target platform are distinct [HK07]. Application developers
therefore do not need to use specific annotations to compute the WCET of an OCaLustre program.
Such annotations (for example, regarding the number of iterations of a loop) can, however, be used
by the platform developer to provide a table of instruction and primitive costs. Once created, this
table is sufficient for analyzing the bytecode of any OCaLustre program. The portability of the method
thus implies the portability of the Bytecrawler tool : for the same program, simply providing a cost
table measured for another microcontroller makes it possible to compute the program’s WCET on that
platform, without even recompiling it.

The method presented in this chapter could certainly benefit from additional static analyses, for
example symbolic execution [BFL18], or concolic execution [Sen07] (a hybrid approach combining, in a
way quite close to our method, concrete and symbolic values), which would allow unreachable execution
paths to be excluded. However, this method is above all an illustration of an analysis leveraging a common
representation (bytecode), rather than a technique aiming at the most precise possible estimation of a
program’s maximal execution time.

Finally, it is worth noting that the method presented in this chapter could easily be extended to
compute other measures beyond execution time : by simply changing the definition of the cost function
(and thus the table representing it), it would be possible to evaluate other criteria, such as estimating the
maximum stack size of a synchronous program, or even the maximum amount of heap-allocated values
during program execution. These considerations regarding program memory footprint will be crucial
in the next chapter, where we will detail different measures for evaluating the performance of the main
solutions presented in this dissertation.
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7 Performance of OMicroB and OCaLustre

This chapter presents and analyzes several measurements aimed at evaluating the efficiency of the
software solutions described in this document. We first present a set of benchmarks carried out on
the OMicroB virtual machine using programs designed to test its capabilities with respect to various
aspects of the OCaml language. We then analyze the performance of OCaLustre in particular through
an evaluation of the memory usage of a complete OCaLustre program, which we compare with an
equivalent program written in the Lucid Synchrone language. Throughout the chapter, we discuss the
results of these measurements in detail and place them in perspective relative to the performance of
existing solutions.

7.1 OMicroB Performance Benchmarks

In this section, we perform several measurements to evaluate the performance of the OMicroB virtual
machine. These measurements, carried out with simple test programs, concern both the speed and
memory consumption of the virtual machine.

7.1.1 Methodology

OMicroB is a highly configurable virtual machine. In fact, the user can specify several concrete aspects
of the machinery responsible for executing OCaml bytecode. This configurability makes it possible to
adapt the virtual machine precisely to the hardware on which it runs. The adjustment of the various
aspects of the virtual machine is performed using specific compilation options, provided in addition to
the command used to compile an OCaml program with OMicroB :

omicrob <options> <file.ml>

In this chapter, we make use of the following compilation options :
— The option -arch <n> selects the word length of OCaml values in the representation used by

OMicroB. This length can be 16, 32, or 64 bits. A 16-bit representation, sufficient for the vast
majority of programs, reduces memory usage.

— The option -gc <algorithm> allows the user to choose the garbage collection algorithm. This can
be the Stop and Copy algorithm (SC) described in Chapter 2, or a Mark and Compact (MC) algorithm.

— The option -no-shortcut-initialization disables the optimization that performs partial eva-
luation of the OCaml program up to its first input/output primitive.

— The option -stack-size <n> sets the size (in words) of the stack used by the virtual machine to
execute the OCaml program bytecode. By default, this size is set to 64 words, but some programs
may require a larger stack. Stack size directly affects the virtual machine’s memory usage.
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— The option -heap-size <n> sets the number (in words) of addressable values in the heap. By
default, this number is 256 words. Like stack size, heap size directly affects the memory consump-
tion of the OCaml program. The chosen garbage collection algorithm influences the actual RAM
usage for the heap : indeed, because of its use of two spaces, the Stop and Copy algorithm requires
reserving a memory section that is twice as large as that of a Mark and Compact garbage collector.

— Finally, the option -no-clean-interpreter disables the optimization that produces a virtual
machine containing only the code for handling the bytecode instructions used by the program.

Because of their common use in both hobbyist and professional projects, we use throughout this sec-
tion a version of OMicroB intended to run on microcontrollers of the AVR family. These microcontrollers,
often embedded in Arduino boards, have very limited memory capacities (notably only a few kilobytes
of RAM), which highlight the importance of OMicroB optimizations and demonstrate the feasibility of
executing OCaml programs on hardware with (very) limited resources. Our measurements are carried
out on an ATmega2560 microcontroller, featuring a computing power of 16 MIPS, 256 kilobytes of flash
memory, and 8 kilobytes of RAM. Running the command omicrob <file>.ml generates two notable
files : a first file <file>.avr, the executable program intended to be uploaded to the microcontroller,
and a second file <file>.elf, the result of compilation with the native gcc compiler. The latter allows
simulation on a PC of the execution of the produced programs.

The two main aspects measured in this chapter are :
— Size criteria : in particular, the size of the generated executables and their memory consumption

are crucial in this application domain where hardware memory resources are highly constrained.
We measure the memory usage of the generated AVR programs using the avr-size command, a
variant of the UNIX size command that displays the size of the different memory sections used by
the program. In particular, avr-size provides the additional formatting option -C, which groups
memory sections into two categories : the amount of flash memory used for the program, and the
amount of RAM used by the program.

To illustrate, Figure 7.1 shows the output of the avr-size command applied to a program
prog.avr 1. It indicates that this program uses 6968 bytes of flash memory (2.7% of the flash
available on an ATmega2560) and 7104 bytes of RAM (86.7% of the RAM available on this micro-
controller).

$ avr-size -C prog.avr --mcu=atmega2560
AVR Memory Usage
----------------
Device: atmega2560

Program: 6968 bytes (2.7% Full)
(.text + .data + .bootloader)

Data: 7104 bytes (86.7% Full)
(.data + .bss + .noinit)

Figure 7.1 – Example output of the avr-size command

— Speed criteria : these illustrate the temporal performance of the virtual machine. Speed measure-
ments are carried out both on .elf programs corresponding to the PC simulation of OMicroB (to

1. The option --mcu specifies the microcontroller model.
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evaluate OMicroB’s performance relative to the standard virtual machine implementation), and
via physical execution time measurements of programs running on a microcontroller. Simulated
program executions are measured using the UNIX time command, which reports the execution
duration of a program. From these measurements, and using the information provided by the si-
mulation regarding the total number of executed instructions, it is possible to compute an average
speed of OMicroB in terms of instructions per second. Note, however, that this speed may vary
depending on the complexity of the executed bytecode instructions : processing a rich instruction
(such as the CLOSURE instruction for closure creation) may take significantly longer than processing
a basic instruction (such as PUSH, which adds an element to the stack). In this sense, the measured
speed can only serve as an approximate indication of OMicroB’s capabilities, which may vary
considerably from one program to another.

These two evaluation criteria strongly depend on the compilation options described earlier. For
example, the RAM usage of programs varies with the chosen stack and heap sizes, while the execution
speed of a program can depend on the chosen architecture : for instance, a microcontroller may take longer
to load and process data represented on 32 bits than on 16 bits. Moreover, the more frequent activation of
garbage collection when using a small heap increases the execution time of OCaml programs, since part
of their execution is then dedicated to cleaning unused memory in the heap.

7.1.2 Test Programs

The various measurements presented in this section are performed on simple OCaml programs, each
designed to test fundamental features of the language and its virtual machine. The source code of these
programs is available online [⚓1], and we briefly describe the operation of each of them below :

1. The programapply.mlperforms one thousand successive applications of the function (λ f x. f ( f x)),
which represents the Church encoding of integers. This program tests the mechanism of higher-
order function application.

2. The program fibo.ml computes the first ten terms of the Fibonacci sequence one hundred thou-
sand times. This program tests recursive function application as well as the use of basic arithmetic
operations.

3. The program takc.ml computes the result of the Takeuchi function one thousand times, with
parameters 18, 12, and 6. This program manipulates triples, testing both the garbage collector and
recursive function application.

4. The program oddeven.ml computes the parity of integers between 0 and 100 ten thousand times.
This program tests the application of mutually recursive functions.

5. The program floats.ml applies trigonometric functions (sin and cos) to floating-point numbers
ten million times. It tests floating-point representation and the performance of operations on floats.

6. The program integr.ml computes ten thousand times the integral
∫ 10

0 (x2 + 2x + 10) dx with a
step of 0.01. This program tests floating-point representation as well as the dynamic generation of
functional values.

7. The program eval.ml is a Boolean formula evaluator that computes ten thousand times the value
of ten Boolean formulas. It tests the definition of algebraic data types, pattern matching, and the
use of the Stackmodule, which represents a stack data structure.
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8. The program sieve.ml computes the prime numbers less than 50 ten thousand times using the
Sieve of Eratosthenes algorithm. This program induces list creation and thus tests the garbage
collection capabilities.

9. The program objet.ml tests OCaml’s object representation : it defines a point class, generates
one hundred thousand objects of this class, and for each computes ten times its symmetric with
respect to the origin by calling the symmethod.

10. The program functor.ml tests the mechanism of parameterized modules (or functors) in OCaml.
It generates a module representing a set of integers using the Set.Make functor from the standard
library, then adds to this set, ten thousand times, the values contained in a list of 50 consecutive
integers.

11. The program bubble.ml implements the bubble sort algorithm using arrays. It generates an
array of 60 elements populated with decreasing integers and applies bubble sort to this array ten
thousand times. This program tests the implementation of arrays, access to their values, and their
updates.

12. The program jdlv.ml implements Conway’s Game of Life on a 10× 10 matrix. It computes the first
ten thousand configurations of the Game of Life starting from a state representing an oscillator.
This program, which uses mutable record fields and matrices, tests their implementation.

13. The program share.ml defines a list filtering function that uses OCaml’s exception mechanism
to avoid unnecessary copying of the original list elements into the resulting list. It filters the list
of natural integers from 0 to 50 one hundred thousand times using the function (λx.x > 25). This
program pushes many exception handlers and thus tests the exception-handling mechanism in
OCaml.

14. The program abrsort.ml performs binary search tree sorting of a set of natural integers between
0 and 100 ten thousand times. It tests OMicroB’s performance on a recursive data structure.

15. Finally, the program queens.ml solves the n-queens problem ten thousand times, with n queens
ranging from 1 to 6. This program tests the computing power of the virtual machine on a non-trivial
algorithmic example.

The measurements on these programs were carried out in two phases : the programs were first tested on
a PC by compiling OMicroB with the gcc compiler. In a second phase, the same tests were executed on
an AVR ATmega2560 microcontroller.

7.1.3 Execution on PC : Results and Interpretation

The programs discussed in this section were compiled with the OMicroB option-no-shortcut-initialization,
in order to avoid triggering OMicroB’s partial evaluation mechanism, ensuring that all computations are
performed at runtime, since these tests make no use of input/output primitives.

All measurements were performed using a 16-bit representation of OCaml values, the Stop and Copy
garbage collection algorithm, a heap size of 2500 words, and a stack size of 500 words. The computer
used was equipped with an Intel Core i5-8259U quad-core processor, with a 64-bit architecture and a
clock speed of 2.3 GHz.
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Execution speed : The tests compare the execution speed of the OMicroB virtual machine (in number of
bytecode instructions per second) with that of the standard ZAM bytecode interpreter, named ocamlrun.
The latter was used in its standard configuration : 64-bit encoded values, a stack of 256,000 words, and a
minor heap of 2 megabytes. The results of the measurements carried out with the configuration described
above are presented in Table 7.1. In particular, the column labeled Ratio represents the ratio between the
execution time of a program with OMicroB and its execution time with ocamlrun : a smaller value is
therefore preferable. Additional results obtained with the Mark and Compact GC, as well as with 32-bit
and 64-bit data representations, are available in Appendices C.1, C.2, and C.3.

Name Execution time Execution time Ratio Execution speed Number of

with ocamlrun with OMicroB with OMicroB OMicroB GC

(seconds) (seconds) (million instr. triggers

bytecode/sec)

apply 1.20 2.14 1.78 306.33 58

fibo 0.55 1.14 2.07 428.82 0

takc 1.05 3.07 2.92 383.31 226000

oddeven 0.28 0.60 2.14 614.68 0

floats 0.56 1.05 1.87 219.46 0

integr 0.04 0.12 3.00 222.16 42

eval 0.04 0.07 1.75 431.42 2352

sieve 0.04 0.07 1.75 486.00 3333

objet 0.10 0.17 1.70 389.77 11765

functor 0.24 0.60 2.50 392.77 30003

bubble 0.93 1.55 1.66 461.49 35

jdlv 0.36 0.75 2.08 457.64 6666

share 0.11 0.25 2.27 480.24 699

abrsort 0.47 1.22 2.59 321.27 119924

queens 1.35 3.35 2.48 413.54 149999

Table 7.1 – Performance measurements of OMicroB programs (on PC)
OMicroB options : -arch 16 -gc SC -stack-size 500 -heap-size 2500

From the measurements carried out on PC, it appears that OMicroB’s execution speed can in some
cases be about 2 to 3 times slower than ocamlrun, the standard bytecode interpreter. These results remain
quite reasonable, as OMicroB’s performance is still within an expected order of magnitude, and our
optimizations primarily target memory consumption rather than execution speed. This performance
difference can be explained by several factors. Notably, the representation of the program as a byte-by-
byte array of C values induces an obvious overhead, compared to ocamlrun loading the program into
RAM and directly reading values whose size corresponds to the processor’s architecture (32 or 64 bits).
Moreover, memory constraints differ between OMicroB (here : 2500 words for the heaphalf of which is
actually available because of the Stop and Copy garbage collector) and ocamlrun (whose minor heap is by
default 2 megabytes on a 64-bit platform). This leads to more frequent triggering of OMicroB’s garbage
collector, slowing down program execution.

For illustration, the graphs in Figure 7.2 show the execution times of the takc.ml and abrsort.ml
programs as a function of different heap sizes and GC algorithms (with a 16-bit representation of values) :
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the general trend is a decrease in execution time as the available heap size increases, stabilizing once the
program consumes less memory than is available.

Finally, the floats test highlights the advantage of our immediate representation of floating-point
values : in this test, OMicroB is almost as fast in 64-bit mode, and even slightly faster in 32-bit mode,
than ocamlrun (see Tables C.2 and C.3 in the appendices). The absence of heap allocation for floats both
reduces GC triggers and limits the number of indirections induced by the standard representation of
floats, which are typically encapsulated and allocated on the heap.

7.1.4 Execution on Microcontroller : Results and Interpretation

In the following, we present and interpret the performance measurements obtained when running
the test programs on a microcontroller. The target is an AVR ATmega2560 microcontroller, with 256
KB of flash memory, 8 KB of RAM, and a clock rate of 16 MIPS. The programs are compiled with the
-no-shortcut-initialization option, using a 16-bit representation of OCaml values, a maximum stack
size of 500 words, a heap size of 2500 words, and the Stop and Copy garbage collector. Note that, due
to the relative slowness of a microcontroller compared to a modern PC, the number of computations
performed in these tests was reduced by a factor of one thousand compared to the PC tests, in order to
keep measurement durations reasonable. For example, the queens.ml program now solves the n-queens
problem only ten times (with n from 1 to 6).

Name Execution time Speed Number of GC

(seconds) (thousands of instr./second) triggers

apply 3.579 183.191 0

fibo 1.984 246.473 0

takc 5.475 214.951 228

oddeven 1.334 276.536 0

floats 7.482 30.812 0

integr 0.745 35.910 0

eval 0.143 212.048 2

sieve 0.195 174.953 3

objet 0.420 162.138 12

functor 1.351 192.904 33

bubble 3.762 190.169 0

jdlv 2.006 171.273 6

share 0.572 211.891 0

abrsort 2.677 147.965 124

queens 6.598 209.987 154

Table 7.2 – Execution speed measurements of OMicroB programs (on ATmega2560)
OMicroB options : -arch 16 -gc SC -stack-size 500 -heap-size 2500

Execution speed : Table 7.2 shows the execution time results for the programs on the 16-bit version
of the virtual machine. Timing measurements were performed using the OCaml function Avr.millis :
unit -> int, which returns the number of milliseconds elapsed since the program was launched on the
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Figure 7.2 – Influence of heap size on execution time (on PC)
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microcontroller. The difference between the value returned by this function at the end of the program and
the value returned at the start provides an estimate of its execution time. This value is then transmitted,
via a serial communication protocol, to the personal computer connected to the microcontroller.

The measurements allow us to evaluate the execution speed of OMicroB on AVR at approximately
200,000 bytecode instructions per second. These results depend on many factors, such as the capabilities
and level of optimization of the compiler used (here, the option applied to avr-gcc is -O2), the nature
of the executed instructions (whose execution times vary according to their level of complexity), and
hardware-specific characteristics. In particular, the floats.ml and integr.ml tests, which manipulate
floating-point numbers, exhibit significantly lower execution speeds. This slowdown is explained by the
specifics of the hardware used : on an AVR microcontroller, floating-point operations are performed in
software, and are thus much slower than on a PC, where such operations are handled directly by the
processor’s arithmetic unit. Furthermore, the non-standard representation of floats in the 16-bit version
of the virtual machine imposes additional conversions during program execution.

Table C.4, in the appendix, presents the measurements for the same programs using a 32-bit version
of the virtual machine. As expected, the measured speed is slower by a factor of roughly 2.

Comparison with OCaPIC : We also compare these results with executions of a subset of the test
programs on OCaPIC, the OCaml virtual machine designed for PIC 18 microcontrollers. In particular,
we ran these programs on a PIC 18f4620 microcontroller, equipped with 64 KB of flash memory, 4 KB
of RAM, and a clock rate of 10 MIPS. Table 7.3 presents the execution time results for these programs 2.
Since OMicroB has not yet been fully ported to PIC 18, these times are compared with those obtained
on the ATmega2560, by extrapolating its computing speed to match the 10 MIPS of the PIC 18f4620.
In this sense, the performance comparison between OCaPIC and OMicroB is necessarily approximate,
intended only to provide a rough idea of the relative performance order of magnitude of the two virtual
machines. From these measurements, it follows that OMicroB is about 3.6 times slower (at equal clock
frequencies) than OCaPIC. It is important to note that the latter benefits from a bytecode interpreter and
garbage collector written in assembly, leveraging PIC-specific optimizations, which may account for its
performance. Moreover, hardware-specific factors also affect program execution speed : for example, a
PIC requires only 2 clock cycles to read a byte from flash memory, compared to 12 cycles on an AVR
microcontroller.

In addition, preliminary experiments to port OMicroB to PIC 18 highlighted the influence of compiler
quality on the execution speed of OCaml programs : using the xc8 compiler provided by the manufacturer
results in execution speeds about 7 times slower on OMicroB than on OCaPIC, for the same program and
on the same microcontroller. This relative slowness is partly explained by the poor optimization of the
generated machine code. For instance, the switch statement in the bytecode interpreter, whose role is to
distinguish instructions based on their opcode in order to execute them, was transformed by xc8 into a
cascade of nested conditional branch instructionsobviously impacting execution speed.

Nevertheless, the temporal performance of OMicroB remains overall quite acceptable, and the fact
that OMicroB is portable is an advantage that must be taken into account. Thus, given the portability
of the solution, OMicroB’s performance demonstrates the viability of using a generic virtual machine.
In Chapter 8, we will present a set of applications that demonstrate the responsiveness of the virtual
machine, as well as its suitability for executing embedded programs.

2. The other programs could not be used on this hardware due to excessive memory requirements.
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Name Execution time Execution time Ratio

with OMicroB on with OCaPIC on OMicroB/OCaPIC

ATmega2560 at 10 MIPS PIC 18F4620 at 10 MIPS

(seconds) (seconds)

apply 5.726 1.632 3.51

fibo 3.174 0.860 3.69

takc 8.76 2.535 3.46

oddeven 2.134 0.657 3.25

integr 1.192 0.252 4.73

eval 0.229 0.064 3.58

sieve 0.312 0.084 3.71

bubble 6.030 1.793 3.36

share 0.915 0.251 3.65

Table 7.3 – Comparison of execution times with OCaPIC
OMicroB options : -arch 16 -gc SC -stack-size 500 -heap-size 2500

Comparison with MicroPython : To give an indication of OMicroB’s performance relative to existing
and frequently used solutions, we carried out a few comparative measurements between some of our
OCaml example programs and their equivalents written in Python. The latter were executed by the
MicroPython implementation on a pyboard (version 1.1) equipped with an STM32F405RG microcontroller,
featuring 1024 KB of flash memory, 192 KB of RAM, and a processor with a clock speed of 168 MHz. As in
the comparison with OCaPIC, we extrapolate the results of the measurements obtained on the pyboard
in order to compare them with OMicroB’s measurements on an ATmega2560 at 16 MHz.

The comparison between MicroPython and OMicroB can only provide a broad indication of their
relative performance, given the significant differences between programs written in OCaml and those
written in Python. Indeed, programming in a camel-like functional style makes heavy use of recursive
functions and data structures, whereas recursion in Python is rather limited : for example, Python lacks
tail-call optimization, which can transform certain recursive functions into iterative ones. As a result,
many of the test programs presented in this section are incompatible with execution under MicroPython,
as they quickly exhaust the call stack depth. On a pyboard, this stack is furthermore quite shallow, with
a depth of only 63 frames.

We therefore present, in Table 7.4, the measurement results obtained on a subset of our test programs
corresponding to those that can run under MicroPython without requiring major structural modifications.
It should be noted that the bubble test, which implements bubble sort, uses Python lists in our Python
version 3, since arrays from the Numpy library are not available in MicroPython. The jdlv test, on the
other hand, was implemented using objects.

The results of these measurements are very promising : OMicroB is consistently faster, at equal clock
frequencies. Notably, the fibo test (likely due to the large number of function calls) shows a clear speed
advantage, and OMicroB performs significantly better on the takc test, which dynamically allocates
many tuples during execution (and triggers numerous garbage collections). However, OMicroB also
demonstrates good performance on imperative and object-oriented tests. It is worth noting that the

3. Accessing and updating an element in such lists still has O(1) complexity, just like OCaml arrays.
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Name Execution time Execution time Ratio

with OMicroB on with MicroPython on MicroPython/OMicroB

ATmega2560 at 16 MHz pyboard (scaled to 16 MHz)

(seconds) (seconds)

fibo 1.984 5.481 2.76

takc 5.475 155.620 28.42

bubble 3.762 4.420 1.17

jdlv 2.006 3.024 1.5

objet 0.420 0.630 1.5

Table 7.4 – Comparison of execution times with MicroPython
OMicroB options : -arch 16 -gc SC -stack-size 500 -heap-size 2500

superior results for the fibo and takc tests do not stem from OCaml’s tail-call optimization, since it is
not applied in fibo, and in takc only the outer recursive call of the Takeuchi function is optimized.

Program and Interpreter Size : Table 7.5 shows the memory footprint of each program on the flash and
RAM of the microcontroller. The almost constant RAM footprint across programs is due to the fact that
the stack and heap sizes are fixed at compile time : static arrays are generated to represent these memory
sections, and their size cannot change during execution. It is worth noting that the flash memory usage of
the objet and functor programs is relatively large. In the first case, this is because the entire mechanism
required to create and manipulate objects is imported into the program’s bytecode. While this incurs a
significant flash memory cost, it remains stable : a program that manipulates ten times more objects and
classes does not have ten times the memory footprint. In the case of the functor program, the extra flash
memory consumption is related to the fact that ocamlclean is unable to statically detect dead code inside
a module produced by a functor application. As a result, in our test, the generated bytecode contains the
full execution code of the module produced by applying the Set.Make functor, even though only a small
subset of its functions are actually used.

The interpreter of the virtual machine, along with its runtime library, also has a significant weight in
these measurements. The size of the interpreter and garbage collector can be estimated by measuring the
flash memory footprint of a program that only computes the unit value. The bytecode of such a program
reduces to the single STOP instruction. Since the optimization that removes unused bytecode handlers
from the interpreter is enabled by default, the resulting executable has a very small flash footprint : in a
16-bit version of OMicroB, the avr-size command reports 1240 bytes in flash. This corresponds to the
size of the smallest possible OCaml program compiled with OMicroB.

In contrast, when the same program is compiled with OMicroB’s -no-clean-interpreter option,
the executable’s flash size is 21340 bytes. Consequently, the interpreter plus the garbage collector (which
is not included when all allocation-related bytecode handlers are removed) occupy about 20 KB. A
program reduced to the single CLOSURE instruction, which allocates a closure (and thus requires the
garbage collector), has a size of 3110 bytes with the interpreter cleaning enabled. This indicates that the
footprint of the Stop and Copy garbage collector is around 2 KB. Equivalent measurements with the Mark
and Compact collector show a footprint of about 3 KB.
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Name Flash footprint (bytes) RAM footprint (bytes)

apply 7626 6116

fibo 8614 6116

takc 8568 6114

oddeven 8230 6112

floats 10536 6128

integr 10870 6122

eval 13420 6239

sieve 9550 6119

objet 24120 6327

functor 20162 6241

bubble 11926 6217

jdlv 11772 6149

share 11122 6135

abrsort 13600 6219

queens 10704 6139

Table 7.5 – Program size measurements for OMicroB (on ATmega2560)
OMicroB options : -arch 16 -gc SC -stack-size 500 -heap-size 2500

In a 32-bit configuration of the virtual machine, the interpreter and garbage collector occupy about
28 KB of flash, while in 64-bit they occupy about 40 KB. These measurements show that without the
optimization brought by compiling a customized interpreter, programs using this virtual machine would
quickly reach the flash memory limits of the targeted microcontrollers (for example, an ATmega32u4
has only 32 KB of flash memory). Thanks to this optimization, the test programs consume on average
only about ten kilobytes of flash memory, which corresponds to the size of the interpreter specialized
for each program, its runtime library, and the program bytecode itself, which also resides in flash. This
optimization therefore provides significant benefits and enables OMicroB to run on hardware where the
full interpreter could not otherwise fit.

It should be noted that a program using all bytecode instructions of the virtual machine would,
of course, also import the entire bytecode interpreter. However, such cases are extremely rare, and the
programs presented in this thesis illustrate that most OCaml programs use only a relatively small (though
variable) subset of the available bytecode instructions.

7.2 OCaLustre Performance Measurements

In this section, we evaluate the performance of the OCaml code produced by OCaLustre and its
suitability with respect to the hardware constraints of the microcontrollers targeted in this thesis. To do
so, we design an example OCaLustre program that performs several computations, and we measure both
the execution speed and the memory footprint of the program when executed within OMicroB.

This example is a parallel ripple-carry adder, which computes the binary sum of 8-bit words. The
adder, illustrated in Figure 7.3, consists of eight independent elements, each responsible for adding two
single-bit values. These 1-bit adders compute the sum of two bits as well as any carry, and are called full
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adders because they also take as input the potential carry generated by the adder responsible for the less
significant bit. The sum of two bytes (a7a6a5a4a3a2a1a0 and b7b6b5b4b3b2b1b0) is thus obtained by adding
each pair of bits (ai, bi) while propagating the carry generated by each 1-bit adder to the next one.

cin++++++++

a0 b0

s0

a1 b1

s1

a2 b2

s2

a3 b3

s3

a4 b4

s4

a5 b5

s5

a6 b6
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c1c2c3c4c5c6c7
cout

Figure 7.3 – 8-bit ripple-carry adder

7.2.1 A Binary Adder in OCaLustre

A 1-bit adder is implemented in OCaLustre as a node named fulladder, whose definition closely
follows the standard representation of an adder in the form of a logic-gate diagram, as illustrated in
Figure 7.4.

a

b

cin

s

cout

Figure 7.4 – Circuit of a full adder

The code of the fulladder node together with the OCaml function xorused to compute the exclusive-
or between two booleans is as follows :

let xor a b = if a then not b else b

let%node fulladder (a,b,cin) ~return:(s,cout) =

x = call xor a b;

s = call xor x cin;

and1 = (x && cin);

and2 = (a && b);

cout = (and1 || and2)

This node computes the sum s of two bits a and b together with an input carry cin, as well as the
potential output carry cout. The bit values are represented here as booleans.
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From a single fulladder node, it is then straightforward to define an adder capable of computing
the sum of two 2-bit values in the form of the node twobits_adder, whose role is simply to chain the
computations of two adders :

let%node twobits_adder (c0,a0,a1,b0,b1) ~return:(s0,s1,c2) =

(s0,c1) = fulladder (a0,b0,c0);

(s1,c2) = fulladder (a1,b1,c1)

This node therefore computes three booleans corresponding to the sum s0s1 of the two values a0a1

and b0b1, as well as the possible carry c2. Following the same principle, we can then define a 4-bit adder,
and finally an 8-bit adder :

let%node fourbits_adder (c0,a0,a1,a2,a3,b0,b1,b2,b3) ~return:(s0,s1,s2,s3,c4) =

(s0,s1,c2) = twobits_adder (c0,a0,a1,b0,b1);

(s2,s3,c4) = twobits_adder (c2,a2,a3,b2,b3)

let%node eightbits_adder (c0,a0,a1,a2,a3,a4,a5,a6,a7,b0,b1,b2,b3,b4,b5,b6,b7)

~return:(s0,s1,s2,s3,s4,s5,s6,s7,c8) =

(s0,s1,s2,s3,c4) = fourbits_adder (c0,a0,a1,a2,a3,b0,b1,b2,b3);

(s4,s5,s6,s7,c8) = fourbits_adder (c4,a4,a5,a6,a7,b4,b5,b6,b7)

This example perfectly illustrates the compositionality inherent in the synchronous approach of
OCaLustre : the definition of a node can be reused and combined by another node, which in turn can be
composed with yet another one, making it straightforward to build increasingly complex applications
without the developer having to worry about causal relationships between the different components of
the program.

7.2.2 Results

From the eightbits_adder node defined above, we construct an OCaLustre program that computes
one hundred thousand times the sum 0b11111111 + 0b11111111. This example is then executed, in the
same way as the previous tests, using the OMicroB virtual machine on a PC.

Table 7.6 shows the performance measurements obtained for this program. In particular, the memory
footprint of OCaLustre is very small : a stack of 80 words and a heap of 400 OCaml values are sufficient
to execute the program, leading to a total RAM consumption of only 1069 bytes and a flash memory
consumption of 7668 bytes.

Execution time Speed Number of GC

Nom (seconds) (millions of instr./sec) triggers

adders.ml 0.54 138.01 550054

Table 7.6 – Measurements of the execution speed of the adder with OMicroB (on PC)
OMicroB options : -arch 16 -gc SC -stack-size 80 -heap-size 400

In terms of execution speed, the performance of OCaLustre programs in OMicroB is good, but
nevertheless slowed down by the large number of garbage-collector invocations. As illustrated in Figure
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7.5, increasing the heap size drastically reduces the number of GC triggers, thereby accelerating program
execution.
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Figure 7.5 – Execution time of the adder as a function of heap size (on PC)

The -na compilation option of OCaLustre generates an imperative style of code optimized for critical
embedded contexts, in the sense that it does not allocate new values during a synchronous instant. As
a result, it avoids triggering the garbage collector during the execution of the synchronous program.
Consequently, the execution speed of the adder is greatly improved when this option is enabled (Table
7.7).

Name Execution time Speed Number of GC

(seconds) (millions of instr./sec) triggers

adder-noalloc.ml 0.21 383.14 0

Table 7.7 – Execution speed of the adder without heap allocations during a synchronous
instant

OMicroB options : -arch 16 -gc SC -stack-size 80 -heap-size 400

Comparison with Lucid Synchrone : We now propose to compare the performance of this program
with that of an equivalent program written in the Lucid Synchrone language. Although the development
of Lucid Synchrone has now been discontinued, its compiler (version 3, dating from April 2006) remains
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available on the project’s website [⚓19]. This compiler produces OCaml code, making it possible to
compare it directly with OCaLustre.

The goal of this comparison is mainly to validate the relevance of using OCaLustre for programming
resource-constrained hardware, by verifying that synchronous programs written in OCaLustre could
not simply have been written in Lucid Synchrone while maintaining equivalent performance. Of course,
Lucid Synchrone is a rich extension of Lustre, with greater expressiveness than OCaLustre, and this
expressiveness is also reflected in the complexity of the generated code. The comparison presented here
should therefore not be regarded as a benchmark of the raw performance of the two languages, but rather
as an illustration of the space savings provided by our syntactic extension for the kind of programs we
target, due to its relative simplicity.

Figure 7.8 reports the measurements obtained on the Lucid Synchrone program adder.ls (whose
code very close to the syntax of OCaLustre is given in Appendix B), as well as on the OCaLustre
program in its standard version (adder.ml) and in its version optimized for critical embedded systems
(adder-na.ml). Since the memory requirements to run the Lucid Synchrone program are higher, the
measurements were carried out with a stack of 150 words and a heap of 600 words.

Execution time Speed Number of GC

Program (seconds) (millions instr./second) triggers

adder.ls 0.79 222.87 440042

adder.ml 0.25 298.11 110010

adder-na.ml 0.19 423.47 0

Table 7.8 – Performance measurements of the adder program with OCaLustre and Lucid
Synchrone (on PC)

OMicroB options : -arch 16 -gc SC -stack-size 150 -heap-size 600

It follows from these measurements that, on this small program and under equal virtual machine
configurations, the performance of Lucid Synchrone is three to four times lower than that of OCaLustre
on a PC. On an ATmega2560, the execution speed of Lucid Synchrone is between four and six times
lower than that of OCaLustre programs 4 (Table 7.9). Due to the expressiveness of the language, the
OCaml code generated by Lucid Synchrone is considerably larger and more resource-demanding than
that generated by OCaLustre. Figure 7.6 shows, for the twobits_adder node, the OCaml code produced
by Lucid Synchrone compared with that produced by OCaLustre compilation. In particular, the Lucid
Synchrone version relies on polymorphic variants, which are relatively costly to represent certain values.
It also generates, at each instant, several references to tuples, with the effect of filling the virtual machine’s
heap fairly quickly. As a result, the need for the Lucid Synchrone program to increase the heap size and
to double the stack size is quite penalizing when targeting microcontrollers whose memory resources are
limited to only a few kilobytes.

Measurements on the manuscript examples : Table 7.10 shows the execution of OCaLustre programs
taken from most of the examples discussed in this manuscript. The name of each program corresponds
to the name of its main node, which is executed one million times. The measurements confirm the
performance results observed with the adder, as well as the low memory consumption of OCaLustre. The
hardware resource usage of the OCaLustre extension is small : its flash memory footprint is comparable

4. As before, the number of instants computed was divided by one thousand for our measurements on the microcontroller.
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Execution time Speed Number Flash size RAM size

Name (seconds) (thousands of instr./second) of GC (bytes) (bytes)

adder.ls 2.181 88.827 482 9250 1627

adder.ml 0.554 148.185 120 7552 1609

adder-na.ml 0.366 221.453 0 8472 1613

Table 7.9 – Execution speeds and sizes of Lucid Synchrone and OCaLustre programs (AT-
mega2560)

OMicroB options : -arch 16 -gc SC -stack-size 150 -heap-size 600

let twobits_adder _cl147 (_148__c0, _149__a0, _150__a1, _151__b0, _152__b1) _325
_self_364 =
let _self_364 = match !_self_364 with

| ‘St_369(_self_364) -> _self_364
| _ -> (let _368 = {_366 = ref ‘Snil_;

_365 = ref ‘Snil_;
_init329 = true} in

_self_364 := ‘St_369(_368);
_368) in

let _cl339__ = ref false in
let _338 = ref (false, false) in
let _cl337__ = ref false in
let _328 = ref false in
let _340 = ref (false, false) in
(if _cl147 then
(_328 := (or) _325 _self_364._init329;
_cl337__ := true;
_338 := fulladder !_cl337__ (_149__a0, _151__b0, _148__c0) !_328 _self_364._365));

(let (_153__s0, _154__c1) = !_338 in
(if _cl147 then
(_cl339__ := true;
_340 := fulladder !_cl339__ (_150__a1, _152__b1, _154__c1) !_328 _self_364._366));

(let (_155__s1, _156__c2) = !_340 in
_self_364._init329 ← (&) !_328 (not _cl147);
(_153__s0, _155__s1, _156__c2)))

let twobits_adder () =
let fulladder1_app = fulladder () in
let fulladder2_app = fulladder () in
fun (c0, a0, a1, b0, b1) ->
let (s0, c1) = fulladder1_app (a0, b0, c0) in
let (s1, c2) = fulladder2_app (a1, b1, c1) in
(s0, s1, c2)

Figure 7.6 – OCaml code of the twobits_adder node generated by Lucid Synchrone (top)
and by OCaLustre (bottom)
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to that of other OCaml programs, and its RAM footprint is also low. This frugal use of resources makes
OCaLustre compatible with many microcontroller models, some with memory capacities of around 2
kilobytes. OCaLustre thus provides a high-level programming model that enables the development of
synchronous programs with strong guarantees (regarding typingof clocks as well as of manipulated
dataor the detection of causal inconsistencies within programs). These advantages are all the more
important since they do not entail increased resource consumption, thereby enabling the development
of embedded systems running on hardware with limited capacity.

Execution time Execution time Ratio Execution speed Number of

Program name with ocamlrun with OMicroB with OMicroB GC runs with

(seconds) (seconds) (millions of instr. OMicroB

bytecode/second)

arith 0.85 1.54 1.81 337.76 357142

blinker 0.02 0.04 2.00 521.67 0

call_cpt 0.06 0.11 1.83 488.14 19058

cpt 0.01 0.03 3.00 645.06 0

ex_const 0.04 0.09 2.25 518.05 17721

ex_norm 0.03 0.06 2.00 575.05 0

ex_tuples 0.06 0.11 1.83 396.31 37411

fibonacci 0.02 0.04 2.00 635.31 0

fibonacci2 0.02 0.04 2.00 660.56 0

merge 0.03 0.06 2.00 558.22 0

ordo 0.06 0.13 2.16 397.50 37411

two_cpt 0.03 0.08 2.66 481.79 18705

watch 0.06 0.13 2.16 428.58 40404

when 0.06 0.10 1.66 395.53 18365

whennot 0.03 0.05 1.66 548.65 0

Table 7.10 – Performance measurements of OCaLustre programs (on PC)
OMicroB options : -arch 16 -gc SC -stack-size 50 -heap-size 500

Chapter Conclusion

The various measurements presented in this chapter confirm that our approach, based on the use
of a virtual machine, is both viable and well-suited for programming microcontrollers in a high-level
language. The mere fact that OCaml programs can be executed, using a generic interpreter, on hardware
with such limited resources is already a success. Moreover, the performance of the OMicroB virtual
machine and of the synchronous OCaLustre extension is entirely satisfactory in terms of both execution
speed and memory consumption of the generated programs : non-trivial applications can be envisaged,
even on hardware that is extremely constrained in memory. In the following chapter, we therefore present
several concrete applications that take advantage of OMicroB and OCaLustre.
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8 Applications for Electronic Devices

We now present a set of practical or recreational applications developed with the software solutions
described in this dissertation. These applications, which can be executed on microcontrollers with very
limited memory and computational resources, highlight the value of the high-level approach adopted in
this thesis. Indeed, it becomes straightforward to implement small embedded programs that take advan-
tage of both the guarantees provided by the OCaml language and the synchronous layer of OCaLustre.

We illustrate this with three example programs, chosen to demonstrate the expressiveness of our
solution while validating its compatibility with hardware constrained to only a few kilobytes of memory.
In particular, the programs described below can be executed on devices with less than 8 kilobytes of
RAM.

Each program presented is tied to a concrete electronic setup. The first example is a program that
controls a simple punched-card reader, where each card encodes the binary representation of one byte.
This example highlights the correspondence between the notion of a synchronous clock and that of a
physical clock, which governs the timing of electrical signals arriving at the program inputs. The second
example manages the operation of a chocolate tempering machinea kitchen appliance designed to melt
chocolate to a precise temperature. The final example is the implementation of a simple Snake video game
for the Arduboy, a small handheld device dedicated to running simple games, typically programmed in
C.

The complete source code for these programs is provided in Appendix D.

8.1 A Punched-Card Reader

For our first example, we develop a microcontroller program integrated into a setup simulating a
punched-card reader. Each card encodes the representation of a single byte using two horizontal rows of
holes. The first row carries the clock signal : whenever the circuit detects a hole in this row, it means that a
data value must also be read. This data is represented on the second row of the card : a hole corresponds
to the binary value 1, while the absence of a hole corresponds to the value 0.

Figure 8.1 illustrates the design of such a punched card. The depicted card encodes the byte 0b10001010 1.

8.1.1 Circuit

A fairly simple electronic circuit, shown in Figure 8.2, can be used to build a reader for such punched
cards. Two digital input pins (I0 and I1 in the figure) of a microcontroller are connected to two metal rods,
each applying light pressure on one of the horizontal rows of holes in the card. The card itself rests on a
metal plate supplied with an electrical current.

When the punched card is slid between the plate and the metal rods, the values represented by
the presence or absence of holes can be detected. If a rod passes over a hole, an electrical contact is

1. The byte is read from left to right, using a big-endian representation.
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Figure 8.1 – Schematic representation of a punched card

established between the rod and the plate, and the corresponding microcontroller pin is connected to
the power source : the value 1 (HIGH) is registered. Conversely, when a metal rod rests on the card, no
contact is made (since the card is non-conductive), and the microcontroller pin is instead connected to
ground via a pull-down resistor : in this case, the value 0 (LOW) is measured.

Finally, the binary value read from the card is output by the microcontroller to a set of eight LEDs
(connected to pins O0 through O7). Each LED represents one bit of the byte encoded on the card : the
LED lights up if the bit is 1, and remains off if the bit is 0.
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Figure 8.2 – Circuit for a punched card reader
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8.1.2 Program

The use of a clock signal physically represented by a sequence of holes on the punched card illustrates
well the notion of a clock in a synchronous program. An OCaLustre program can therefore be easily
written to control the circuit described above. In this program, a clock signal must be set to true whenever
the metal pin positioned on the line corresponding to the clock signal falls into a hole. However, as long
as the pin remains in the same hole, a continuous stream of true values should not be produced : it is in
fact the entry into a hole that must indicate a tick of the clock signal. To achieve this, we define a node
edge that detects such a rising edge :

let%node edge x ~return:e =

e = (x && (not (true ≫ x)))

Using this node, we then define the node read_bit, which reads a bit on the card whenever the clock
signal is true :

let%node read_bit (top,bot) ~return:(clk,data) =

clk = edge top;

data = bot [@when clk]

The flow top corresponds to the state of the first line of the punched card, and the flow bot to the state
of the second line. It is worth noting here that the « physical » representation of the clock by holes in the
punched card is directly reflected in the definition of the synchronous clock signal clk, which represents
the sampling frequency of the data signal data.

The program must detect when eight bits have been read. To achieve this, we declare a node count
that counts the number of synchronous instants, from 0 up to the integer preceding a reset value named
reset :

let%node count (reset) ~return:(c) =

c = (0 ≫ (c + 1)) mod reset

Each time the clock signal is true, the value of the data signal is stored in an array of 8 cells. Such an
array t is declared in OCaml as follows :

let t = Array.make 8 false

In this program, once eight bits have been read, the corresponding byte will be displayed on eight
LEDs connected to the microcontroller. We then define a main node read_card, which represents the
complete reading of a punched card : once eight bits have been read, the flow send is set to true, signaling
to the OCaml program that it can update the state of the LEDs :

let%node read_card (top,bot) ~return:(i,data,clk,send) =

(clk,data) = read_bit (top,bot);

i = count(8 [@when clk]);

send = merge clk (i = 7) false
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The index of the array cell corresponding to the bit currently being read is represented by the flow i.
This flow is only present (and its value incremented) when the clock clk is true.

On an AVR ATmega2560 microcontroller, where the metal rods are connected to pins 13 and 12, and
the LEDs are connected to pins 42 to 49, the OCaml code responsible for the program’s input/output is
as follows :

open Avr

let t = Array.make 8 false

let clk = PIN13

let data = PIN12

let leds = [| PIN42 ; PIN43; PIN44; PIN45; PIN46; PIN47; PIN48; PIN49 |]

let init () =

(* configure pins as input *)

pin_mode clk INPUT;

pin_mode data INPUT;

(* configure pins as output *)

Array.iter (fun x -> pin_mode x OUTPUT) leds

let input_clk () = bool_of_level (digital_read clk)

let input_data () = bool_of_level (digital_read data)

(* function that turns an LED on or off *)

let update_led i b = digital_write leds.(i) (level_of_bool b)

let output i data clk send =

if clk then t.(i) ← data;
if send then Array.iteri update_led t

Finally, the code of the program’s main loop, which provides the interface between these functions
and the synchronous OCaLustre program, is shown below :
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let () =

(* hardware initialization *)

init ();

(* creation of the main node state *)

let st = read_card_alloc () in

while true do

(* reading inputs *)

let c = input_clk () in

let d = input_data () in

(* updating the state of the main node *)

read_card_step st c d;

(* emitting outputs *)

let i = st.read_card_out_i in

let data = st.read_card_out_data in

let clk = st.read_card_out_clk in

let send = st.read_card_out_send in

output i data clk send

done

This code is compatible with the OCaLustre compilation model designed for real-time embedded
systems. Thus, during execution of the program’s main loop, no new OCaml values are allocated on the
heap : the garbage collector is therefore never triggered during execution of the synchronous program,
and the execution time of a synchronous instant can then be measured using Bytecrawler. The -m option,
followed by the name of the main node, automatically generates the code of the program’s main loop, as
well as the prototypes of the functions that allow interaction between the synchronous program and its
environment. We will illustrate the use of this option in the following examples.

8.1.3 Static analyses of the program

Using the tools described earlier in this manuscript, we can perform several static analyses on the
program’s source code, as well as on the associated bytecode.

Clock typing : The clock types induced by the clock inference algorithm for the nodes of the punched
card reader program are as follows 2 :

edge :: (x:base) -> (e:base)

read_bit :: (top:base * bot:base) -> (clk:base * data:(base on clk))

count :: (reset:base) -> (c:base)

read_card :: (top:base * bot:base) -> (i:(base on clk) * data:(base on clk) * clk:base * send:base)

These types are exactly as expected : in particular, the values of the flows i and data are present only
when the clock flow clk is true. The use of the merge operator to define the flow sendmakes it possible to
oversample the value (c=7) on the base clock. This clock typing information must be taken into account
when implementing the interface functions between the synchronous program and the OCaml program :
for example, it would be incorrect for these functions to access the value of the flow iwhen the flow clk
is false.

2. Typing information for the nodes can be displayed using the -i option of OCaLustre.
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Worst-case execution time : On an AVR ATmega2560 microcontroller, the worst-case execution time of
a synchronous instant of this program, which includes calls to input/output primitives, is estimated by
the Bytecrawler tool at 57,162 cycles.

It should be noted, however, that the use of arrays in the program involves calls to specific C primitives
for reading and writing array cells. By default, these primitives check that the indices of the accessed
cells are strictly less than the array size, and raise an exception otherwise. However, the Bound-T tool
(which we also use to estimate the execution time of the primitives) cannot determine the execution time
of a function that may raise an exception. Therefore, we compile the program with the -unsafe option
of the ocamlc compiler, in order to disable these array bound checks, thus making it possible to estimate
the maximum execution times of the primitives that perform array reads or writes.

Since the microcontroller used has a clock frequency of 16 MHz, our punched card reader is able
to process a pair (clock, data) in about 3.57 milliseconds. This short duration ensures that the user of the
punched card cannot, in practice, slide a card too quickly through the device and cause a faulty read.

8.1.4 Memory consumption

The minimum stack size required for this program to run smoothly is 36 values, while the minimum
heap size is 318 values. Thus, in a 16-bit configuration of the virtual machine, only 879 bytes of RAM are
needed for this program to execute. Its flash memory footprint is about 12.1 kilobytes, which makes it
compatible with microcontrollers with even fewer memory resources than the ATmega2560, such as the
ATTiny1614, which has 16 kilobytes of flash memory and 2048 bytes of RAM, and whose purchase cost
is around 60 euro cents.

Enabling early evaluation, which consists of precomputing the values from the initialization of OCaml
modules at compile time, further reduces memory usage : the program then requires only a stack of 35
values and a heap of 160 values, for a flash memory footprint of 10.8 kilobytes and a RAM usage of just
533 bytes.

8.2 A Chocolate Tempering Machine

For our second application example, we describe the circuit and program for implementing a chocolate
tempering machine. This device is a kitchen appliance that heats chocolate to a temperature specified by
the user. Our tempering machine is built from a relatively inexpensive electronic setup. In this circuit, an
ATmega2560 microcontroller is connected to the following electronic components :

— An electric heating resistor that converts an electrical signal into heat.
— A temperature sensor that converts the temperature of its environment into an analog value.
— A two-segment liquid crystal display (LCD) of type LCD1602A, often provided in microcontroller

development kits.
— Two push buttons.
Figure 8.3 is a schematic representation of this electronic circuit.

The components of this circuit are used as follows : the heating resistor is placed in a container
filled with water, and the chocolate is then heated in a bain-marie by the tempering machine, which
controls the temperature of the water. Whenever the current temperature of the preparation is below the
target temperature set by the user, the heating resistor is activated to raise the temperature. The interface
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Figure 8.3 – Schematic representation of the chocolate tempering machine
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consisting of the LCD screen and the two push buttons allows the user to increase or decrease the desired
temperature.

The role of the program associated with this circuit is therefore to send an electrical signal to the
pin connected to the resistor depending on the value returned by the temperature sensor. The desired
temperature is calculated based on successive presses of the push buttons. In parallel, the program
continuously displays both the current temperature of the preparation and the target temperature on the
LCD screen.

8.2.1 OCaLustre Program

The microcontroller at the core of this circuit is responsible for executing the program by synchronizing
the different electronic components involved in the operation of the tempering machine. The synchronous
programming model is therefore particularly well suited to such an embedded program : each node of
the synchronous program represents a component of the application, which must execute at the same
time as the others, and their interaction governs the operation of the complete device.

The synchronous program associated with this circuit is then very simple : only three OCaLustre
nodes are required to define the behavior of the program :

(** turn on/off if both + and - are pressed simultaneously **)

let%node thermo_on (p,m) ~return:(b) =

b = (true ≫ if p && m then not b else b)

(** modify the desired temperature depending on which button is pressed **)

let%node set_wanted_temp (p,m) ~return:(w) =

w = (325 ≫ if p then w+5 else if m then w-5 else w)

(** main node: computes desired temperature and the state of the heater **)

(** Temperatures are expressed in tenths of degrees Celsius **)

let%node thermo (plus,minus,real_temp) ~return:(on,wanted,real,resistor) =

on = thermo_on (plus,minus);

wanted = set_wanted_temp (plus[@when on], minus[@when on]);

real = real_temp [@when on];

heat = (real < wanted);

resistor = merge on heat false

The program manipulates temperature values as integers representing tenths of degrees Celsius. In
particular, the main node receives the values of the two push buttons and the measurement from the
temperature sensor, and produces five distinct flows :

— The flow on distinguishes the active state of the device from the standby state : the tempering
machine switches between the two whenever both push buttons are pressed at the same time.
This flow is the clock that governs the presence of most flows handled by the program.

— The flow wanted is defined as the result of the call to the node set_wanted_temp, which allows the
desired temperature (initialized at 32.5 °C) to be increased or decreased in increments of 0.5 °C,
depending on the buttons pressed by the user of the tempering machine. This flow is only defined
when the on flow is true.
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— The flow real is the result of sub-sampling the flow real_temp, which represents the value
measured by the temperature sensor, using the clock on.

— The flow heat defines the condition under which the heating resistor should be turned on : if
the actual temperature is lower than the desired temperature, then this flow is true. It should be
noted that, in order to keep the examples in this chapter simple, this version of the tempering
machine is extremely naïve : the inertia of the heating resistor can cause the temperature to rise
above the desired value. A real device would take into account various physical aspects of the
system’s environment in order to control temperature variations more preciselyfor example, by
stopping the heating as soon as the preparation reaches a temperature close to the desired one, or
by calculating the heating duty cycle required to maintain a stable temperature. However, such
refinements go beyond the purpose of this chapter, which is to illustrate, through simple examples,
possible applications of synchronous programming with OCaLustre. An OCaLustre program that
computes the heating duty cycle is nevertheless provided in Appendix D.2.3.

— The flow resistor results from merging the previous flow with a constant flow computing the
value false. This flow indicates whether the heating resistor should be powered. When the device
is off, the resistor must be off (false) ; when the tempering machine is on, the value of the heat
flow determines the state of the heating resistor.

Clock typing and node signatures : The clock types of the nodes automatically inferred by OCaLustre
during compilation are as follows :

thermo_on :: (p:base * m:base) -> (b:base)

set_wanted_temp :: (p:base * m:base) -> (w:base)

thermo :: (plus:base * minus:base * real_temp:base)

-> (on:base * wanted:(base on on) * real:(base on on) * resistor:base)

In accordance with the description of the different flows defined by the program, the flows wanted
and real returned by the node thermo are indeed clocked by the flow on : their values are therefore only
available when the tempering machine is active.

8.2.2 Interaction loop

The -m <node> option of OCaLustre generates the execution engine code of the program, responsible
for repeatedly calling the node <node>. This node then acts as the main node. This option generates
a file <node>_io.ml pre-filled with the signatures of the functions init_<node>, input_<node>, and
output_<node>, which correspond to the interaction functions between the synchronous kernel of the
program and the rest of the OCaml code.

In addition, the -d <ms> option allows the main loop to be clocked so that one execution of a
synchronous instant of the program is performed every <ms>milliseconds. Since the chocolate tempering
program does not involve strict timing constraints, an execution frequency of 1/500 ms seems sufficient :
the program is therefore compiled with the options -m thermo -d 500.

An thermo_io.ml file containing the prototypes of the functions that enable interaction between the
synchronous part of the program and its environment is then generated by OCaLustre. Once completed,
the code of these functions is as follows :
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(*** Interface functions for the synchronous instant ***)

(** initialization function **)

let init_thermo () =

(* initialize analog reading *)

Avr.adc_init ();

(* initialize the display *)

LiquidCrystal.lcdBegin lcd 16 2;

(* initialize the pins *)

pin_mode sensor INPUT;

pin_mode resistor OUTPUT;

pin_mode plus INPUT;

pin_mode minus INPUT

(** input function **)

let input_thermo () =

let plus = digital_read plus in

let minus = digital_read minus in

let plus = bool_of_level plus in

let minus = bool_of_level minus in

let real_temp = read_temp () in

(plus,minus,real_temp)

(** output function **)

let output_thermo (on,wanted,real,res) =

if on then

begin

print_temp wanted real;

digital_write resistor (if res then HIGH else LOW)

end

else idle ()

These functions make use of auxiliary OCaml functions that are mainly responsible for converting
the temperature measured by the electronic sensor into degrees Celsius, as well as displaying them on
the LCD screen. The code for these functions, along with the declarations of the different variables used
by the program, is as follows :
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open Avr

(* declaration of the LCD screen *)

let lcd = LiquidCrystal.create4bitmode PIN13 PIN12 PIN18 PIN19 PIN20 PIN21

(* declaration of pins *)

let plus = PIN7

let minus = PIN6

let resistor = PIN10

let sensor = PINA0

(* temperature conversion *)

let convert_temp t =

let f = (float_of_int (1033 - t) /. 11.67) in

int_of_float (f*.100.)

(* temperature reading *)

let read_temp () =

let t = analog_read sensor in

convert_temp t

(* displaying the temperatures on the LCD screen *)

let print_temp wanted real =

let split_temp t =

let u = t/10 in

let dec = t mod 10 in

(u,dec) in

LiquidCrystal.home lcd;

let (wu,wd) = split_temp wanted in

let (ru,rd) = split_temp real in

LiquidCrystal.print lcd "Wanted T :";

LiquidCrystal.print lcd ((string_of_int wu)^"."^(string_of_int wd));

LiquidCrystal.setCursor lcd 0 1;

LiquidCrystal.print lcd "Actual T :";

LiquidCrystal.print lcd ((string_of_int ru)^"."^(string_of_int rd))

let idle () =

LiquidCrystal.home lcd; LiquidCrystal.clear lcd; LiquidCrystal.print lcd "..."

8.2.3 Memory Consumption

The chocolate tempering program requires at minimum a stack of 61 values and a heap of 448 values,
which corresponds, in a 16-bit representation of OCaml values, to a total memory footprint of 17.3
kilobytes of flash memory and only 1277 bytes of RAM (with the Stop and Copy GC 3). Nevertheless,

3. It should be noted that due to the use of this GC algorithm, the number of OCaml values that can actually be allocated
corresponds to half the heap size.
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since the frequent activation of the GC algorithm slows down program execution (as illustrated in the
previous chapter), it would be unfortunate not to take advantage of the full extent of the RAM of the
microcontroller being used. A heap of 3800 words thus makes it possible to fill nearly all 8 kilobytes
of RAM of the ATMega2560 microcontroller, reducing the number of GC triggers during the first one
hundred synchronous instants from 699 to just 4.

8.2.4 Simulation

The simulator integrated into OMicroB makes it possible to run this program directly on a computer,
mainly to facilitate debugging. Figure 8.4 shows the simulator interface for this program : the state of the
heating resistor is represented here by an LED located between the two buttons + and -, which allow the
user to adjust the temperature. The horizontal bar located below these elements is used to set the value
measured on the analog input pin to which the temperature sensor is actually connected.

Figure 8.4 – Execution of the chocolate tempering program in the simulator

8.3 A Snake Game

The final application presented in this dissertation is a small video game of « Snake », in which a
snake, represented by a sequence of contiguous cells, moves in a two-dimensional world to eat apples
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that appear as the game progresses. Each time the snake eats an apple, it grows by one cell, and a new
apple appears on the screen. The objective of the game is for the snake to eat as many apples as possible
in order to reach a certain size, while avoiding collisions with itself, which would kill it (and cause the
player to lose).

This video game was very popular in the late 1990s and early 2000s, during the rise of mobile phones :
phones of that era, whose computing speeds were comparable to those of the microcontrollers studied
in this dissertation 4, could run a handful of simple games adapted to the limited performance of mobile
processors of the time. For this reason, we detail in this section an implementation of this game adapted to
a small device with very limited hardware resources. This device, called the Arduboy, is a small portable
game console the size of a credit card, designed for the development of small games, often inspired by
the retrogaming community. For performance considerations and precise use of the device’s resources,
programs developed by the Arduboy community are generally written in C. However, through this
example, we show that it is entirely feasible to develop an application on it using the OMicroB/OCaLustre
pair. The software solutions presented in this dissertation thus enable the use of high-level abstractions
on hardware with very restricted memory resources. Figure 8.5 shows an Arduboy running the Snake
game.

Figure 8.5 – An Arduboy

The complete source code of the modules presented in this section is available in Appendix D.3.

8.3.1 Anatomy of an Arduboy

The main component of an Arduboy is a microcontroller from the AVR family : the ATmega32u4.
This microcontroller falls into what we consider to be highly resource-constrained hardware : while its
theoretical clock speed can reach 16 MHz, the Arduboy’s battery has a fairly low voltage (between 3.4V
and 3.7V), so its actual performance is closer to 1112 MHz. Furthermore, the ATmega32u4 has 32 KB of
flash memory and only 2.5 KB of RAM, which requires programs to have a very small memory footprint.

An Arduboy also contains several electronic components, mostly for user interaction : it has six
push buttons (four directional arrows up, down, left, and right and two action buttons A and B), a

4. For example, the Nokia 3310, released in 2000, had a Texas Instruments MAD2WD1 processor running at 13 MHz.
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monochrome OLED (Organic Light-Emitting Diode) display with a resolution of 128 × 64 pixels, three
LEDs (one red, one green, and one blue) located next to the screen, as well as a piezoelectric speaker
capable of playing low-definition sounds. For our application, we will use the display to show the snake
and the apple to be eaten, the left and right direction buttons to move the snake, and the LEDs to indicate
whether the game is won (green) or lost (red).

The circuit diagram representing the Arduboy components used by our program is shown in Figure
8.6.
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Figure 8.6 – Arduboy components used by the Snake game

8.3.2 Program for the Electronic Circuit

The program takes into account the technical specificities of the Arduboy : we first describe the OCaml
modules that allow interaction between the microcontroller and the input/output components, which are
necessary for the proper functioning of the game.
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SPI Connection and OLED Display Interface : On an Arduboy, data transfer between the microcontrol-
ler and the OLED display (SSD 1309 type) is carried out via an SPI (Serial Peripheral Interface) connection
that uses two wires :

— One wire is connected to the SCK (Serial Clock) pin of the microcontroller and carries the clock
signal that synchronizes the communication.

— One wire is connected to the MOSI (Master Output, Slave Input) pin of the microcontroller and
carries the command or data signals sent to the display.

The SPI connection is implemented directly in hardware by the microcontroller : it only needs to be
properly initialized 5, after which any byte placed in the SPDR register is transmitted by the microcontroller.
The OCaml code that configures and interacts with the SPI connection is provided in a module named
Spi, whose implementation is shown in Figure 8.7. This module makes use of the Avr module provided
in the OMicroB standard library, which defines the registers and pins of the microcontroller, along with
functions to modify their state.

(*** Module for managing the SPI (Serial Peripheral Interface) connection ***)

open Avr

(** Initialize the SPI connection **)
let begin_spi ~sck ~mosi =
set_bit SPCR MSTR;
set_bit SPCR SPE;
set_bit SPSR SPI2x;
pin_mode sck OUTPUT;
pin_mode mosi OUTPUT

(** Stop the SPI connection **)
let end_spi () = clear_bit SPCR SPE

(*** Transmit data via the SPI connection ***)
let transfer data = write_register SPDR data

Figure 8.7 – spi.mlmodule for interacting with a serial peripheral

Moreover, the signals used to control the display are carried by three separate wires :
— A wire connected to the D/C (Data/Command) pin of the display sets it to either « command » mode

or « data » mode.
— A wire connected to the CS (Chip Select) pin of the display enables communication between the

display and the microcontroller only when it is at a low level (LOW).
— A wire connected to the RST (Reset) pin of the display resets the microcontroller : if this pin goes

from high (HIGH) to low (LOW), the display resets.
In addition, to illustrate interoperability between OCaml and the C language, the display data will

be stored in a C array of bytes (in which each byte represents 8 points on the screen) acting as a buffer.
It should be noted that, in order to reduce the memory footprint of the program and simplify the
readability of the game, the screen resolution actually used by Snake will be 64 × 32 points. The display

5. The technical details, which involve configuring the SPI connection by setting specific bits in several registers, are outside
the scope of this dissertation.
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will nevertheless take up the entire width and height of the screen : the game’s « points » will therefore
appear as 2 × 2 pixels on the display.

The OCaml module Oled, an excerpt of which is shown in Figure 8.8, contains the functions required for
handling the display and managing the buffer. In particular, a function Oled.flush allows transferring
a new image representing the current state of the game to the display. Details about the display’s
characteristics and configuration are available in the SSD1306 datasheet [⚓4].

(*** Draw a point (true=black / false=white) ***)
let draw x y color = write_buffer x y color

(*** Clear the screen ***)
let clear () =
for _i = 0 to 1023 do
Spi.transfer(0x00)
done

(*** Send the buffer to the display ***)
let flush () =
for _i = 0 to 1023 do
Spi.transfer(get_byte_buffer())
done

(*** Initialize the display ***)
let boot ~cs ~dc ~rst =
digital_write rst HIGH;
digital_write rst LOW;
digital_write rst HIGH;
command_mode cs dc;
transfer_program boot_program;
data_mode cs dc;
clear()

Figure 8.8 – oled.mlmodule (excerpt) for configuring and controlling the SSD1306 display

Arduboy Configuration : Finally, an Arduboy module (fig. 8.9) configures the device’s components
using functions from the standard library. The pin numbers follow the Arduino naming convention (in
this case, that of the Arduino Leonardo, which also embeds an ATMega32u4 microcontroller).

— The function pin_mode allows one to configure a pin as an input (INPUT), an output (OUTPUT), or an
input connected through a pull-up resistor. AVR pins include an internal pull-up resistor, which has
the effect that the value read on a pin is high (HIGH) when it is not connected to any component.
Consequently, when the Arduboy’s push buttons are open, the value read is HIGH, and when
they are closed, the value read is LOW because they are connected to the circuit ground.

— The function digital_write allows one to write a binary value (high level or low level) to a pin.
This module, whose implementation follows the wiring diagram that represents the connections

between the microcontroller and the external components, configures all the hardware required for this
application : in particular, the init function configures the pins used by the program, activates the SPI
interface, and initializes the display.
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open Avr

(** Pins used **)
let cs = PIN12
let dc = PIN4
let rst = PIN6
let button_left = PINA2
let button_right = PINA1
let button_down = PINA3
let button_up = PINA0
let button_a = PIN7
let button_b = PIN8
let blue = PIN9
let red = PIN10
let green = PIN11

(** Initialize RGB LEDs with common anode (HIGH = off) **)
let init_led l =
digital_write l HIGH

(** Turn on one of the RGB LEDs with common anode (LOW = on) **)
let light_led l =
digital_write l LOW

(** Initialize pins **)
let boot_pins () =
List.iter (fun x -> pin_mode x INPUT_PULLUP) [button_left; button_right; button_up;

button_down];
pin_mode button_a INPUT_PULLUP;
pin_mode button_b INPUT_PULLUP;
List.iter (fun x -> pin_mode x OUTPUT) [red;green;blue];
List.iter (fun x -> pin_mode x OUTPUT) [cs;dc;rst];
List.iter init_led [red;green;blue]

(** Initialize pins, SPI link, and the display **)
let init () =
boot_pins ();
Spi.begin_spi ~sck:SCK ~mosi:MOSI;
Oled.boot ~cs:cs ~dc:dc ~rst:rst

Figure 8.9 – Arduboy.mlmodule : configuration and initialization of hardware
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The different modules presented in this subsection together implement a library for controlling the
internal hardware of the Arduboy. This library can be used for the implementation of our Snake game, but
it can also be reused in many other projects targeting this hardware. Indeed, all the functionality presented
in this section simply reflects the characteristics of the electronic circuit and the relationships between its
various components, which do not change from one program to another. This library illustrates the fact
that using a high-level language such as OCaml is also well suited for defining low-level interactions,
as is the case here with the electronic interactions between the ATmega32u4 microcontroller and the
components it is connected to.

8.3.3 Game Program

Building on the library described in the previous section, we now turn to the details of the Snake game
implementation. This game has the structure of a synchronous program that uses both an OCaLustre
kernel to represent the reaction to player actions, and OCaml functions whose main role is to handle
communication between this kernel and external peripherals such as the display or the directional
buttons.

In this program, the snake is represented by an array snake in which each cell stores the positions of
the various sections of the snake’s body :

let max_size = 15

let snake = Array.make max_size (0,0)

Two values, head and tail, represent the indices of the array cells corresponding respectively to the
head and the tail of the snake. To represent the movement of the snake, at each instant of the program
these two pointers each advance to the next higher index, and the position of the new head of the snake
is written into the cell now pointed to by head. As illustrated in figure 8.10, the array has a circular
structure : whenever either of these pointers moves past the end of the array, it is reset to index 0.

0 1 2 3 4 5 6 7 8 9 max_size − 1

tail head

. . .

snake

Figure 8.10 – Structure of the snake

Synchronous kernel : The game loop is responsible for computing the direction of the snake based on
whether the right or left button is pressed, calculating the new position of its head, and also taking into
account the fact that the snake grows whenever its head reaches the same position as the apple (in other
words : whenever it eats the apple). The code for this loop is an OCaLustre node that takes as input
the maximum size of the snake, the state of the left and right buttons, as well as the dimensions of the
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world. It computes the new values of the head and tail pointers, the new position of the snake’s head
(new_x,new_y), the position of the apple (apple_x,apple_y), and indicates whether the player has won
(win) :

~return:(head,tail,new_x,new_y,apple_x,apple_y,win) =

(new_x,new_y) = new_head (dir,width,height);

dir = direction(left,right);

head = (1 ≫ ((head+1) mod max_size));

eats = (apple_x = new_x && apple_y = new_y);

(a_x,a_y) = new_apple (width [@when eats], height [@when eats]);

apple_x = (10 ≫ merge eats a_x (apple_x [@whennot eats]));

apple_y = (10 ≫ merge eats a_y (apple_y [@whennot eats]));

tail = merge eats ((0≫ tail)[@when eats]) (0 ≫ ((tail+1) mod max_size)[@whennot eats]);

size = (1 ≫ merge eats ((size + 1) [@when eats]) (size [@whennot eats]));

win = (size = max_size - 1)

This node defines a clock eats, which is true whenever the snake eats the apple. This clock governs the
execution of several computations :

— When eats is true, a new position (a_x,a_y) for the apple is computed by a node new_apple :

(** Random draw of an integer **)

let new_position n = Random.int n

(** New position of the apple **)

let%node new_apple (width,height) ~return:(a_x,a_y) =

(a_x,a_y) = (call new_position width, call new_position height)

— When eats is true, the snake’s size size increases.
— If eats is true, the pointer to the tail of the snake (tail) is not shifted, which simulates the snake

growing longer.

The game loop also calls a node direction to compute the direction of the snake :

let left_of = function South -> East | North -> West | East -> North | West -> South

let right_of = function South -> West | North -> East | East -> South | West -> North

(** Turn left **)

let%node left (dir) ~return:ndir =

ndir = call left_of dir

(** Turn right **)

let%node right (dir) ~return:ndir =

ndir = call right_of dir

(** Snake’s direction based on its previous direction **)

let%node direction (l,r) ~return:dir =
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pre_dir = (South ≫ dir);

dir = if l then

(merge l (left (pre_dir [@when l])) (pre_dir [@whennot l]))

else

(merge r (right (pre_dir [@when r])) (pre_dir [@whennot r]))

In particular, the use of the operator≫ makes it possible to define the flow dir based on its previous
value : thus, at the beginning of the program the snake moves south, then, when the left button (resp.
right) is pressed, it turns left (resp. right) relative to its previous position. The snake keeps the same
direction if no button is pressed. The node game_loop also calls a node new_head, which computes the
new position of the head :

(** Modulo **)

let nmod x y = (x + y) mod y

(** New coordinate **)

let%node new_coord (dir,max,v,dir1,dir2) ~return:n =

n = if dir = dir1 then call nmod (v-1) max

else if dir = dir2 then call nmod (v+1) max

else v

(** New position of the snake’s head **)

let%node new_head (dir,w,h) ~return:(x,y) =

x = new_coord (dir,w,0 ≫ x,West,East);

y = new_coord (dir,h,0 ≫ y,North,South)

Finally, the main node main of the OCaLustre program is responsible for detecting a rising edge on
the two buttons that allow the snake to turn left or right, and calls the node implementing the game loop :

(** Rising edge (for the buttons) **)

let%node rising_edge i ~return:o =

o = (i && (not (false ≫ i)))

(** Main node **)

let%node main (max_size,button1,button2,width,height)

~return:(head,tail,nx,ny,apple_x,apple_y,win) =

left = rising_edge (button1);

right = rising_edge (button2);

(head,tail,nx,ny,apple_x,apple_y,win) =

game_loop(max_size,left,right,width,height)

Main loop and interaction functions : In the same way as in the previous example, the -m option of
OCaLustre is used to generate the execution machine code of the program, responsible for repeatedly
executing its main node.
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Once the option -m main is specified, the file main_io.ml is generated by OCaLustre with the pro-
totypes of the interaction functions. After being completed, this code essentially contains the functions
required for displaying the game, as well as for reading the values of the Arduboy’s buttons. However,
since the current version of OCaLustre does not handle arrays, the function that checks whether the
snake collides with itself (named eats_itself) is also defined in this file, directly in OCaml.

8.3.4 Memory consumption

In a 16-bit configuration of the virtual machine, and with the Stop and Copy garbage collector, the
Snake game program can run with a stack size of at least 60 values and a heap of at least 744 values,
for a memory footprint of 17.1 kilobytes in flash and 2204 bytes of RAM, which comes very close to the
2.5 kilobytes of RAM available on the microcontroller. The use of eager evaluation nevertheless makes
it possible to reduce the stack size to 58 values, and the use of the Mark and Compact garbage collector
allows doubling the allocation zone (and thus reducing the frequency of GC calls) without increasing the
size of the RAM. Over the first hundred synchronous instants of the program, the number of garbage
collector invocations thus drops from 49 with the Stop and Copy GC to 18 with the Mark and Compact GC.

Chapter Conclusion

The examples presented in this chapter have demonstrated the feasibility of executing simple, yet
complete, programs on devices with very limited resources. These examples also highlight the advantages
of using high-level programming paradigms. The programs benefit from the guarantees provided by
high-level languages (worst-case execution time estimation, typing, causal loop detection) while still
being executable on hardware with very limited resources. Thus, a microcontroller with less than 2.5
kilobytes of RAM is capable of running all the programs described in this chapter.

This very small footprint of OCaLustre programs embedding the OMicroB virtual machine makes
it entirely realistic to consider execution on hardware with greater memory resources (such as micro-
controllers based on ARM Cortex-M0 processors, which can provide several hundred kilobytes of flash
memory and several tens of kilobytes of RAM), thereby enabling the development of richer and more
complex programs that can leverage advanced components such as Bluetooth modules, accelerometers,
or multicolor touchscreens.
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Conclusion and Perspectives

The objective of this thesis was to propose a set of solutions for programming microcontrollers in
high-level languages, in order to demonstrate that it is indeed possible to benefit from the advantages
of richer programming models while still meeting the constraints of such hardware. To this end, we
have described in this manuscript a suite of software solutions and formal approaches that enable a
progressive rise in abstraction, providing at each level of this succession of abstractions new guarantees
on the programs produced. In this conclusion, we recall the various contributions of this thesis, in light
of the increasing levels of abstraction they illustrate and the new guarantees they provide. We then
discuss the different perspectives and future work that would be appropriate to further our approach of
improving both the safety and expressiveness of microcontroller programming.

Contributions

Figure 9.1 schematically summarizes the positioning of each chapter of this manuscript with respect
to the gain in abstraction provided by the different approaches presented in this thesis.

The first contribution of this thesis relied on a virtual machine approach enabling the execution of
multiparadigm languages on a variety of hardware. We proposed OMicroB, a virtual machine for the
OCaml language, designed with the goal of being portable to many different models of microcontrollers
while maintaining a limited memory footprint. Configurable and optimized, this virtual machine has
been run on microcontrollers with memory resources not exceeding 8 kilobytes of RAM and a few
tens of kilobytes of flash memory. Moreover, OMicroB’s performance in terms of execution speed is
quite promising, since it is relatively close to that of the standard OCaml virtual machine, which does
not share the same advantages in terms of reduced memory usage. OMicroB also provides a better
approach for program debugging : first, because its full compatibility with the bytecode generated by
the standard ocamlc compiler makes it possible to use traditional OCaml analysis and debugging tools
(such as the ocamldebug debugger), and second, thanks to its simulator, which can represent the electronic
components connected to the programmed microcontroller and test their interactions directly on the
developer’s computer. Furthermore, the static type safety ensured by the OCaml compiler reduces the
number of potential runtime errors. Because of the portability of its bytecode, the expressiveness of
the language, and the use of automatic memory management, OMicroB abstracts away the hardware on
which the program runs, making it possible to confidently deploy the same program on different devices.
Our work on the virtual machine approach and the implementation of OMicroB was presented at the
ERTS2 (Embedded Real Time Software and Systems) conference in 2016 [VVC16] and 2018 [VVC18a].

This hardware abstraction provided a first foundation for subsequent abstractions. We then addressed
the fact that a very large number of embedded systems, in which microcontrollers play a predominant role,
exhibit concurrent aspects. This inherent concurrency, resulting from the multiple interactions between
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such a system and its environment, justifies the addition of a suitable programming model for develo-
ping such systems, alongside the more algorithmic aspects of general-purpose languages. We therefore
proposed OCaLustre, an extension of the OCaml language, which makes it possible to use synchronous
programming features for the development of embedded programs, while benefiting from the advan-
tages of the host language and the OMicroB virtual machine. This language extension has a compilation
model that gives it a small memory footprint, making it well suited to the hardware constraints of the
microcontrollers considered. The OCaLustre synchronous extension therefore provides an abstraction
of concurrency : the use of a synchronous programming model makes the elaboration and interaction of
the various concurrent elements of a program implicit. Moreover, the choice of a dataflow model makes it
straightforward to represent interactions between the program and its physical environment, consisting
of electronic components that communicate by emitting electrical signals whose values change over
time. This synchronous extension also provides new guarantees for the programs produced, for example
by checking at compile time the causal consistency of the different software components involved in a
program, thereby avoiding deadlocks during execution. In addition, OCaLustre has a formal specifi-
cation of which several aspects have been mechanically verified using formalization and proof tools.
For example, the synchronous clock system, which governs the absence or presence of values during
program execution, was formally defined. A tool verifying the consistency between this system and
the clock types inferred by the OCaLustre compiler was formalized and proven correct in Coq, then
extracted into OCaml code for integration into the compiler. This formal specification of the language
and the verification of some of its properties therefore provide OCaLustre programs with a higher level
of safety. The description of the OCaLustre language and its compilation was published in the JFLA
(Journées Francophones des Langages Applicatifs) proceedings in 2017 [VVC17].

The abstractions provided by our work do not come at the expense of verifying essential guarantees
for developing embedded, sometimes critical, systems, and even make it possible to factorize certain
analyses. Indeed, we illustrated the advantage of using a common bytecode across all implementations
of the OMicroB virtual machine to perform worst-case execution time (WCET) analysis of a synchronous
program. Estimating this execution time is often necessary for the proper behavior of a critical embedded
system, to ensure that the synchronous program’s reaction time is shorter than the frequency of its
inputs. We therefore proposed a method to compute an upper bound of the actual execution time of
an OCaLustre program by analyzing its bytecode instructions. This method was then proven correct
for a language similar to a subset of OCaml bytecode instructions and implemented in a tool called
Bytecrawler, which calculates the WCET of an OCaLustre program without requiring users to deal with
the complex details of the low-level code actually executed by the virtual machine interpreter. The use
of bytecode thus represents, in some sense, a third level of abstraction provided by our solution : this
abstraction makes the analyses more straightforward and less dependent on hardware specifics. Our
description of WCET analysis, along with its formalization and proof of correctness, was presented at the
WCET workshop (International Workshop on Worst-Case Execution Time Analysis), a satellite of the ECRTS
conference (Euromicro Conference on Real-Time Systems), in 2019 [VC19].

The various tools developed during this research, as well as the formal specification of OCaLustre
and the partial verification of its associated properties, constitute a complete toolchain for developing
safer and richer applications on microcontrollers with very limited hardware resources. Performance
measurements evaluating the resource consumption of the OMicroB/OCaLustre pair confirm the viability
of our solution, which has low memory usage. In this regard, three complete applications, each based
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on a different electronic circuit, were described and shown to run on microcontrollers with very scarce
resources. The programming of a video game for an Arduboy also served as a practical application for a
tutorial invited at JFLA 2018 [VVC18b]. All the examples presented further demonstrate the relevance of
our various contributions, from the expressive power of the OCaml language to the safety guarantees of
the synchronous extension. The ease of deploying such applications is made possible by the portability
of the proposed solutions. Indeed, all the software solutions described in this thesis are portable :
OCaLustre programs are compiled into standard bytecode, executable on a generic virtual machine, and
analyzable with tools that can be easily adapted to different microcontrollers. This portability is at the
heart of this thesis’s ambitions : to enable the development of safe applications free from the hardware-
specific constraints of the target device. The implementation work carried out already makes the different
prototypes of the software solutions presented in this thesis fully usable, and industrial applications are
envisaged within the framework of the LCHIP project (Low Cost Integrity Platform) [⚓11], in partnership
with the company CLEARSY. This project aims to build a safe, low-cost execution platform based on PIC32
microcontrollers. Our virtual machine approach and synchronous programming model could provide,
within this platform, an alternative execution mode to introduce redundancy in program execution in
order to verify correctness.

Perspectives

The various efforts undertaken in this thesis represent a first complete approach to programming
microcontrollers using high-level languages and programming models, which provide additional gua-
rantees compared to traditional microcontroller programming techniques. To conclude this manuscript,
we propose a set of directions aimed at further increasing the expressive power and guarantees of our
solutions, as well as their compatibility with (very) low-resource hardware.

First, the OMicroB virtual machine could benefit from further optimizations to enable, on low-resource
hardware, the execution of programs whose memory usage is currently incompatible with our solution.
One of the main causes of excessive RAM consumption by an OCaml program comes from immutable
values that persist in the heap and are never freed, such as character strings corresponding to exception
names (used explicitly or implicitly). For instance, the exceptions Out_of_memory and Stack_overflow
are systematically declared by the runtime library, and their names persist in the heap for the entire
execution. Current work aims to move such immutable values from the microcontroller’s RAM to its
flash memory, which is generally larger but not intended to be modified during program execution.
The heap would thus be split between RAM (for mutable values) and flash (for immutable values).
This optimization would free up significant heap space for truly dynamic values. Additionally, we plan
to continue porting OMicroB to a wider range of hardware, to further validate the portability of our
approach. Our targets include ESP32 boards with 520 kilobytes of RAM and 4 megabytes of flash, as well
as STM32 microcontrollers on Nucleo boards, whose more constrained models still have 2 kilobytes of
RAM and 16 kilobytes of flash.

The initial efforts at formalization and verification of some properties of the OCaLustre language
could eventually lead to a fully certified compiler. In particular, proving that compiled programs respect
the language semantics would guarantee that no absent flow value is ever read during execution, thereby
strengthening the safety of synchronous clock typing. Work is also planned to directly extract from Coq
the code implementing most of the compilation steps of an OCaLustre program, in order to ensure that
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the compilation process adheres to the adopted formal specification. In this respect, we could build upon
the work of Bourke et al. on Vélus [BBD+17], a Lustre compiler certified in Coq.

Furthermore, new guarantees about the consistency of programs could be checked through the use
of synchronous contracts, modeled after model-checking tools such as Lesar [Rat92] and Kind2 [CMST16].
Initial attempts at defining contracts in OCaLustre with extraction to WhyML (compatible with the Why3
verification platform [FP13]) or to Isabelle/HOL have been undertaken. However, verification quickly
becomes difficult when these contracts refer to past flow values (e.g., to express that a flow has increasing
values over time), because proving such properties requires a k-induction principle that general-purpose
verification tools struggle to exploit automatically.

In addition, initial work has aimed to represent OCaLustre’s clock typing within OCaml’s own
type system, using generalized algebraic data types (GADTs). These promising efforts could enable the
standard OCaml compiler itself to verify the complete type safety of an OCaLustre programcovering
both standard data typing (whose correctness with respect to the OCaml translation we have proven)
and clock typing. Leveraging OCaml’s rich type system in this way would be a further advantage of
using a high-level language.

The specification of OCaLustre and its prototype currently handle only flows of simple types, such
as booleans and integers. This restriction was made to preserve the same semantics as Lustre and to
support a non-allocating compilation mode compatible with all valid OCaLustre programs. However, it
would be advantageous to exploit the richness of the host language by allowing flows of more complex
types. Such an extension would make OCaLustre programs more expressive. For example, an OCaLustre
program could manipulate flows of tuples, flows of lists, or even flows of functions or nodes, enabling
higher-order synchronous programming as in Lucid Synchrone. Extending OCaLustre to richer data
types seems straightforward for the standard compilation model discussed in Chapter 4, but it would
make WCET verification more difficult because of the dynamic allocation of values it introduces.

Finally, our solution could benefit from more advanced static analyses on OCaml programs, for ins-
tance to bound the amount of memory allocated by a program and guarantee that no heap overflow
occurs during execution. We envisage drawing inspiration from and extending related work targeting
ML-style embedded programming. These approaches introduce an explicit region system into the lan-
guage in order to statically estimate an upper bound on the maximum number of live values in the
heap during execution [SC16a]. Such analyses could also make it possible to integrate GC execution time
into WCET computation (potentially by triggering it deliberately, e.g., at the beginning of a synchronous
instant).

All of these perspectives ultimately aim to continue the approach presented in this thesis : increasing
the safety of embedded systems programming while offering higher-level programming models on
microcontrollers that still retain very limited resources.
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A Representation of OCaml Values

A.1 Representation of Values in the ZAM

A.1.1 32-bit Representation

Integer :
0131

integer value 1

Pointer :
01231

0 0

pointer value

Block header :
07891031

size

co
lo

r

tag

Floating-point numbers are allocated on the heap in blocks that contain two OCaml values (these are
double-precision floats on 32 × 2 = 64 bits).

A.1.2 64-bit Representation

Integer :
0163

integer value 1

Pointer :
02363

0 0 0

pointer value

Block header :
07891063

size

co
lo

r

tag

Floating-point numbers are allocated on the heap in blocks that contain one OCaml value (these are
also 64-bit double-precision floats).
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A.2 Representation of Values in OMicroB

A.2.1 16-bit Representation

Integer :
0115

integer value 1

Floating-point (positive) :
019101415

0 exponent mantissa 1

Floating-point (negative) :
019101415

1 exponent mantissa 1

NaN :

015

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

Heap pointer :
0115

0

pointer value

Block header :
012815

tag size

co
lo

r

A.2.2 32-bit Representation

Integer :
0131

integer value 1

Floating-point (positive) :
022233031

0 exponent mantissa

Floating-point (negative) :
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022233031

1 exponent mantissa

NaN :
022233031

0 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Heap pointer :
012212231

0 1 1 1 1 1 1 1 1 1 0 0

pointer value

Block header :
012222431

tag size

co
lo

r

A.2.3 64-bit Representation

Integer :
0163

integer value 1

Floating-point (positive) :
051526263

0 exponent mantissa

Floating-point (negative) :
051526263

1 exponent mantissa

NaN :
051526263

0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Heap pointer :
0123505163

0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

pointer value

Block header :
012555663

tag size

co
lo

r
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B Lucid Synchrone Code of the Adder

1 let xor a b = if a then not b else b

2

3 let node fulladder (a,b,cin) =

4 let x = (xor a b) in

5 let s = (xor x cin) in

6 let and1 = (x && cin) in

7 let and2 = (a && b) in

8 let cout = (and1 || and2) in

9 (s,cout)

10

11 let node twobits_adder (c0,a0,a1,b0,b1) =

12 let (s0,c1) = fulladder (a0,b0,c0) in

13 let (s1,c2) = fulladder (a1,b1,c1) in

14 (s0,s1,c2)

15

16 let node fourbits_adder (c0,a0,a1,a2,a3,b0,b1,b2,b3) =

17 let (s0,s1,c2) = twobits_adder (c0,a0,a1,b0,b1) in

18 let (s2,s3,c4) = twobits_adder (c2,a2,a3,b2,b3) in

19 (s0,s1,s2,s3,c4)

20

21 let node heightbits_adder (c0,a0,a1,a2,a3,a4,a5,a6,a7,b0,b1,b2,b3,b4,b5,b6,b7) =

22 let (s0,s1,s2,s3,c4) = fourbits_adder (c0,a0,a1,a2,a3,b0,b1,b2,b3) in

23 let (s4,s5,s6,s7,c8) = fourbits_adder (c4,a4,a5,a6,a7,b4,b5,b6,b7) in

24 (s0,s1,s2,s3,s4,s5,s6,s7,c8)
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C Performance Measurement Results

Name Execution time Execution time Ratio Execution speed Number of

with ocamlrun with OMicroB with OMicroB OMicroB GC

(seconds) (seconds) (millions of activations

instr./second)

apply 1.22 2.14 1.75 306.33 29

fibo 0.55 1.30 2.36 376.04 0

takc 1.05 3.11 2.96 378.38 110500

oddeven 0.28 0.61 2.17 604.60 0

floats 0.56 1.05 1.87 219.46 0

integr 0.04 0.12 3.00 222.16 21

eval 0.04 0.08 2.00 377.50 1153

sieve 0.04 0.07 1.75 486.00 1666

objet 0.08 0.17 2.12 389.77 3424

functor 0.26 0.58 2.23 406.31 10001

bubble 0.93 1.51 1.62 473.71 17

jdlv 0.36 0.74 2.05 463.82 2999

share 0.11 0.27 2.45 444.67 321

abrsort 0.47 1.17 2.48 335.00 38084

queens 1.37 3.47 2.53 399.24 56666

Table C.1 – Performance measurements with the Mark and Compact GC (on PC)
OMicroB options : -arch 16 -gc MC -stack-size 500 -heap-size 2500
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Name Execution time Execution time Ratio Execution speed Number of

with ocamlrun with OMicroB with OMicroB OMicroB GC

(seconds) (seconds) (millions of activations

instr./second)

apply 1.21 2.27 1.87 288.79 58

fibo 0.54 1.16 2.14 421.43 0

takc 1.04 2.94 2.82 400.26 221999

oddeven 0.28 0.62 2.21 594.85 0

floats 0.59 0.57 0.96 404.28 0

integr 0.04 0.06 1.50 440.00 41

eval 0.04 0.08 2.00 377.50 2307

sieve 0.04 0.07 1.75 486.00 3333

objet 0.08 0.16 2.00 414.13 10989

functor 0.24 0.60 2.50 392.77 30002

bubble 0.93 1.43 1.53 500.21 35

jdlv 0.37 0.72 1.94 476.70 6666

share 0.11 0.26 2.36 461.77 684

abrsort 0.47 1.14 2.42 343.81 115198

queens 1.37 3.22 2.35 430.23 149999

Table C.2 – Performance measurements in a 32-bit representation of values (on PC)
OMicroB options : -arch 32 -gc SC -stack-size 500 -heap-size 2500

Name Execution time Execution time Ratio Execution speed Number of

with ocamlrun with OMicroB with OMicroB OMicroB GC

(seconds) (seconds) (millions of activations

instr./second)

apply 1.26 2.36 1.87 277.77 58

fibo 0.58 1.21 2.08 404.01 0

takc 1.06 2.97 2.80 396.21 219666

oddeven 0.29 0.60 2.06 614.68 0

floats 0.58 0.75 1.29 307.25 0

integr 0.05 0.06 1.20 444.33 41

eval 0.04 0.08 2.00 377.50 2272

sieve 0.05 0.07 1.40 486.00 3333

objet 0.08 0.18 2.25 368.12 10666

functor 0.24 0.60 2.50 392.77 30002

bubble 1.00 1.55 1.55 461.49 34

jdlv 0.37 0.83 2.24 413.53 6666

share 0.11 0.25 2.27 480.24 675

abrsort 0.52 1.20 2.30 326.62 112604

queens 1.35 3.29 2.43 421.08 144999

Table C.3 – Performance measurements in a 64-bit representation of values (on PC)
OMicroB options : -arch 64 -gc SC -stack-size 500 -heap-size 2500
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Name Execution time Speed Number of GC activations

(seconds) (thousands instr./second)

apply 7.860 83.432 0

fibo 2.999 163.065 0

takc 13.730 85.714 434

oddeven 2.262 163.085 0

floats 4.780 48.229 0

integr 0.379 69.902 0

eval 0.355 85.416 4

sieve 0.390 87.477 9

bubble 7.469 94.519 0

jdlv 3.737 91.938 16

share 1.373 88.275 1

Table C.4 – Program execution speed measurements for OMicroB in 32-bit mode (on AT-
mega2560)

OMicroB options : -arch 32 -gc SC -stack-size 500 -heap-size 1400

Programs not appearing in this table correspond to those that cannot be executed with this reduced heap size used to
compensate for the value size.
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D Application Code

D.1 Punch Card Reader Program

1 open Avr

2

3 let t = Array.make 8 false

4 let clk = PIN13

5 let data = PIN12

6 let leds = [| PIN42 ; PIN43; PIN44; PIN45; PIN46; PIN47; PIN48; PIN49 |]

7

8 let init () =

9 (* set input pins *)

10 pin_mode clk INPUT;

11 pin_mode data INPUT;

12 (* set output pins *)

13 Array.iter (fun x -> pin_mode x OUTPUT) leds

14

15 let input_clk () = bool_of_level (digital_read clk)

16 let input_data () = bool_of_level (digital_read data)

17

18 (* function that switch on/off an LED *)

19 let update_led i b = digital_write leds.(i) (level_of_bool b)

20

21 let output i data clk send =

22 if clk then t.(i) ← data;
23 if send then Array.iteri update_led t

24

25 let%node edge x ~return:e =

26 e = (x && (not (true ≫ x)))

27

28 let%node read_bit (top,bot) ~return:(clk,data) =

29 clk = edge top;

30 data = bot [@when clk]

31

32 let%node count (reset) ~return:(cpt) =

33 cpt = (0 ≫ (cpt + 1)) mod reset

34

35 let%node read_card (top,bot) ~return:(i,data,clk,send) =

36 (clk,data) = read_bit (top,bot);

37 i = count(8 [@when clk]);
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38 send = merge clk (i = 7) false

39

40 let () =

41 (* initialising hardware *)

42 init ();

43 (* create state of the main node *)

44 let st = read_card_alloc () in

45 while true do

46 (* lecture des entrées *)

47 let c = input_clk () in

48 let d = input_data () in

49 (* update state of the main node *)

50 read_card_step st c d;

51 (* emit outputs *)

52 let i = st.read_card_out_i in

53 let data = st.read_card_out_data in

54 let clk = st.read_card_out_clk in

55 let send = st.read_card_out_send in

56 output i data clk send

57 done

D.2 Temperer Program

D.2.1 tempereuse.ml

1 (** switch on/off when + and - are pushed together **)

2 let%node thermo_on (p,m) ~return:(b) =

3 b = (true ≫ if p && m then not b else b)

4

5 (** change desired temperature dependending on button pushed **)

6 let%node set_wanted_temp (p,m) ~return:(w) =

7 w = (325 ≫ if p then w+5 else if m then w-5 else w)

8

9 (** main node: calculation of the desired temp and the state of the resistor *)

10 (** Temps are in 10th of degrees C **)

11 let%node thermo (plus,minus,real_temp) ~return:(on,wanted,real,resistor) =

12 on = thermo_on (plus,minus);

13 wanted = set_wanted_temp (plus[@when on], minus[@when on]);

14 real = real_temp [@when on];

15 heat = (real < wanted);

16 resistor = merge on heat false

D.2.2 thermo_io.ml

1 open Avr

2

3 (* Display *)

4 let lcd = LiquidCrystal.create4bitmode PIN13 PIN12 PIN18 PIN19 PIN20 PIN21
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5

6 (* déclaration des pins *)

7 let plus = PIN7

8 let minus = PIN6

9 let resistor = PIN10

10 let sensor = PINA0

11

12 (* Convert temperature *)

13 let convert_temp t =

14 let f = (float_of_int (1033 - t) /. 11.67) in

15 int_of_float (f*.100.)

16

17 (* Read temperature *)

18 let read_temp () =

19 let t = analog_read sensor in

20 Serial.write_string "an=";

21 Serial.write_int t;

22 convert_temp t

23

24 (* Display temperatures on the LCD *)

25 let print_temp wanted real =

26 let split_temp t =

27 let u = t/10 in

28 let dec = t mod 10 in

29 (u,dec) in

30 LiquidCrystal.clear lcd;

31 LiquidCrystal.home lcd;

32 let (wu,wd) = split_temp wanted in

33 let (ru,rd) = split_temp real in

34 LiquidCrystal.print lcd "Wanted T :";

35 LiquidCrystal.print lcd ((string_of_int wu)^"."^(string_of_int wd));

36 LiquidCrystal.setCursor lcd 0 1;

37 LiquidCrystal.print lcd "Actual T :";

38 LiquidCrystal.print lcd ((string_of_int ru)^"."^(string_of_int rd))

39

40 (*** Input/output functions of the synchronous instant ***)

41 (** set-up function **)

42 let init_thermo () =

43 (* set-up analog read *)

44 Avr.adc_init ();

45 (* set-up display *)

46 LiquidCrystal.lcdBegin lcd 16 2;

47 (* set-up pins *)

48 pin_mode sensor INPUT;

49 pin_mode resistor OUTPUT;

50 pin_mode plus INPUT;

51 pin_mode minus INPUT
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52

53 (** input function **)

54 let input_thermo () =

55 let plus = digital_read plus in

56 let minus = digital_read minus in

57 let plus = bool_of_level plus in

58 let minus = bool_of_level minus in

59 let real_temp = read_temp () in

60 (plus,minus,real_temp)

61

62 (** output function **)

63 let output_thermo (on,wanted,real,res) =

64 if on then

65 begin

66 print_temp wanted real;

67 digital_write resistor (if res then HIGH else LOW)

68 end

69 else

70 begin

71 LiquidCrystal.home lcd;

72 LiquidCrystal.clear lcd;

73 LiquidCrystal.print lcd "..."

74 end;

D.2.3 Handling the Heating Duty Cycle

The following OCaLustre program accounts for the inertia in the temperature rise of the preparation :
it measures the proportion to which the heating element must be activated.

1

2 let%node min(a,b) ~return:c =

3 c = if a < b then a else b

4

5 let%node max(a,b) ~return:c =

6 c = if a > b then a else b

7

8 (** Calculation of the heating proportion (in %) **)

9 let%node update_prop (wtemp,ctemp) ~return:(prop) =

10 delta = min (10,max (-10,wtemp-ctemp));

11 delta2 = if delta < 0 then (-delta * delta) else (delta*delta);

12 offset = min (10,delta2);

13 pre_prop = (0 ≫ prop);

14 prop = min (100,max (0, (pre_prop+offset)))

15

16 let%node timer (number) ~return:(alarm) =

17 time = (0 ≫ (time + 10)) mod 100;

18 alarm = if (time < number) then true else false

19

20 let%node heat (w,c) ~return:(h) =
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21 count = (0 ≫ count + 1) mod 10;

22 update = (count = 0);

23 (* The duty cycle (prop) is updated every 10 instants *)

24 prop = merge update

25 (update_prop (w [@when update],c [@when update]))

26 ((0 ≫ prop) [@whennot update]);

27 h = timer (prop)

28

29 (** Turn on/off when + and - are pressed simultaneously **)

30 let%node thermo_on(p,m) ~return:(b) =

31 b = (true ≫ if p && m then (not b) else b)

32

33 (** Change the desired temperature depending on the button pressed **)

34 let%node set_wanted_temp (p,m) ~return:(w) =

35 w = (325 ≫ if p then w+5 else if m then w-5 else w)

36

37 (** Main node: computation of the desired temperature and the state of the heating element **)

38 (** Temperatures are expressed in tenths of degrees Celsius **)

39 let%node thermo (plus,minus,real_temp) ~return:(on,wanted,real,resistor) =

40 on = thermo_on (plus,minus);

41 wanted = set_wanted_temp (plus[@when on], minus[@when on]);

42 real = real_temp [@when on];

43 heat = heat (wanted,real);

44 resistor = merge on heat false

D.3 Snake Program

D.3.1 spi.ml

1 (*** SPI (Serial Peripheral Interface) connection management module ***)

2

3 open Avr

4

5 (** Initialize the SPI connection **)

6 let begin_spi ~sck ~mosi =

7 set_bit SPCR MSTR;

8 set_bit SPCR SPE;

9 set_bit SPSR SPI2x;

10 pin_mode sck OUTPUT;

11 pin_mode mosi OUTPUT

12

13 (** Stop the SPI connection **)

14 let end_spi () = clear_bit SPCR SPE

15

16 (*** Send data via the SPI connection ***)

17 let transfer data = write_register SPDR data
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D.3.2 oled.ml

1 open Avr

2

3 (*** Write/read functions for the display buffer ***)

4 external write_buffer : int -> int -> bool -> unit = "caml_buffer_write"

5 external read_buffer : int -> int -> bool = "caml_buffer_read"

6 external get_byte_buffer : unit -> int = "caml_buffer_get_byte"

7

8 (*** Screen boot program ***)

9 let boot_program =

10 [|

11 0xD5; 0xF0; (* Set display clock divisor = 0xF0 *)

12 0x8D; 0x14; (* Enable charge Pump *)

13 0xA1; (* Set segment re-map *)

14 0xC8; (* Set COM Output scan direction *)

15 0x81; 0xCF; (* Set contrast = 0xCF *)

16 0xD9; 0xF1; (* Set precharge = 0xF1 *)

17 0xAF; (* Display ON *)

18 0x20; 0x00; (* Set display mode = horizontal addressing mode *)

19 |]

20

21 (*** Send the program to the screen ***)

22 let transfer_program prog =

23 Array.iter Spi.transfer prog

24

25 (*** Set the screen to "command" mode ***)

26 let command_mode cs dc =

27 digital_write cs HIGH;

28 digital_write dc LOW;

29 digital_write cs LOW

30

31 (*** Set the screen to "data" mode ***)

32 let data_mode cs dc =

33 digital_write dc HIGH;

34 digital_write cs LOW

35

36 (*** Send a command to the screen ***)

37 let send_lcd_command cs dc com =

38 command_mode cs dc;

39 Spi.transfer com;

40 data_mode cs dc

41

42 (*** Draw a pixel (true = black / false = white) ***)

43 let draw x y color =

44 write_buffer x y color

45

46 (*** Clear the screen ***)
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47 let clear() =

48 for _i = 0 to 1023 do

49 Spi.transfer(0x00)

50 done

51

52 (*** Send the buffer to the screen ***)

53 let flush () =

54 for _i = 0 to 1023 do

55 Spi.transfer(get_byte_buffer())

56 done

57

58 (*** Screen initialization ***)

59 let boot ~cs ~dc ~rst =

60 digital_write rst HIGH;

61 digital_write rst LOW;

62 digital_write rst HIGH;

63 command_mode cs dc;

64 transfer_program boot_program;

65 data_mode cs dc;

66 clear()

D.3.3 arduboy.ml

1 open Avr

2

3 (** The pins used **)

4 let cs = PIN12

5 let dc = PIN4

6 let rst = PIN6

7 let button_left = PINA2

8 let button_right = PINA1

9 let button_down = PINA3

10 let button_up = PINA0

11 let button_a = PIN7

12 let button_b = PIN8

13 let blue = PIN9

14 let red = PIN10

15 let green = PIN11

16

17 (** Initialization of the common-anode RGB LEDs (HIGH = off) **)

18 let init_led l =

19 digital_write l HIGH

20

21 (** Turn on one of the common-anode RGB LEDs (LOW = on) **)

22 let light_led l =

23 digital_write l LOW

24

25 (** Initialization of the pins **)
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26 let boot_pins () =

27 List.iter (fun x -> pin_mode x INPUT_PULLUP) [button_left; button_right; button_up;

28 button_down];

29 pin_mode button_a INPUT_PULLUP;

30 pin_mode button_b INPUT_PULLUP;

31 List.iter (fun x -> pin_mode x OUTPUT) [red;green;blue];

32 List.iter (fun x -> pin_mode x OUTPUT) [cs;dc;rst];

33 List.iter init_led [red;green;blue]

34

35 (** Initialization of the pins, the SPI connection, and the screen **)

36 let init () =

37 boot_pins ();

38 Spi.begin_spi ~sck:SCK ~mosi:MOSI;

39 Oled.boot ~cs:cs ~dc:dc ~rst:rst

D.3.4 snake.ml

1

2 (** Snake direction **)

3 type direction = South | North | East | West

4

5 (** Orientation functions: the snake turns left and right

6 ** relative to its current direction **)

7 let left_of = function

8 | South -> East

9 | North -> West

10 | East -> North

11 | West -> South

12

13 let right_of = function

14 | South -> West

15 | North -> East

16 | East -> South

17 | West -> North

18

19 (** Modulo **)

20 let nmod x y =

21 (x + y) mod y

22

23 (** Random selection of an integer **)

24 let new_position n = Random.int n

25

26 (** New coordinates **)

27 let%node new_coord (dir,max,v,dir1,dir2) ~return:n =

28 n = if dir = dir1 then call nmod (v-1) max

29 else if dir = dir2 then call nmod (v+1) max

30 else v

31



D.3. Snake Program 229

32 (** New position of the head of the snake **)

33 let%node new_head (dir,w,h) ~return:(x,y) =

34 x = new_coord (dir,w,0 ≫ x,West,East);

35 y = new_coord (dir,h,0 ≫ y,North,South)

36

37 (** Turn left **)

38 let%node left (dir) ~return:ndir =

39 ndir = call left_of dir

40

41 (** Turn right **)

42 let%node right (dir) ~return:ndir =

43 ndir = call right_of dir

44

45 (** Direction of the snake based on previous direction **)

46 let%node direction (l,r) ~return:dir =

47 pre_dir = (South ≫ dir);

48 dir = if l then

49 (merge l (left (pre_dir [@when l])) (pre_dir [@whennot l]))

50 else

51 (merge r (right (pre_dir [@when r])) (pre_dir [@whennot r]))

52

53 (** New position of the apple **)

54 let%node new_apple (width,height) ~return:(a_x,a_y) =

55 (a_x,a_y) = (call new_position width, call new_position height)

56

57 (** Game loop **)

58 let%node game_loop (max_size,left,right,width,height)

59 ~return:(head,tail,new_x,new_y,apple_x,apple_y,win) =

60 (new_x,new_y) = new_head (dir,width,height);

61 dir = direction(left,right);

62 head = (1 ≫ ((head+1) mod max_size));

63 eats = (apple_x = new_x && apple_y = new_y);

64 (a_x,a_y) = new_apple (width [@when eats], height [@when eats]);

65 apple_x = (10 ≫ merge eats a_x (apple_x [@whennot eats]));

66 apple_y = (10 ≫ merge eats a_y (apple_y [@whennot eats]));

67 tail = merge eats ((0≫ tail)[@when eats]) (0 ≫ ((tail+1) mod max_size) [@whennot eats]);

68 size = (1 ≫ merge eats ((size + 1) [@when eats]) (size [@whennot eats]));

69 win = (size = max_size -1)

70

71 (** Rising edge (for the buttons) **)

72 let%node rising_edge i ~return:o =

73 o = (i && (not (false ≫ i)))

74

75 (** Main node **)

76 let%node main (max_size,button1,button2,width,height) ~return:(head,tail,nx,ny,apple_x,apple_y,win) =

77 left = rising_edge (button1);

78 right = rising_edge (button2);
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79 (head,tail,nx,ny,apple_x,apple_y,win) = game_loop(max_size,left,right,width,height)

D.3.5 main_io.ml

1 open Avr

2

3 (*** Game functions du jeu ***)

4

5 (** The array containing the positions of the snake’s body **)

6 let max_size = 15

7 let snake = Array.make max_size (0,0)

8

9 (** Tests whether the snake collides with itself *)

10 exception Lose

11 let eats_itself head tail =

12 let f c = if c = snake.(head) then (raise Lose) in

13 try

14 if tail < head then

15 begin

16 for i = tail to head - 1 do

17 f snake.(i);

18 done

19 end

20 else

21 begin

22 for i = tail to max_size - 1 do

23 f snake.(i);

24 done;

25 for i = 0 to head - 1 do

26 f snake.(i);

27 done;

28 end;

29 false

30 with Lose -> true

31

32 (*** Display functions ***)

33

34 let draw_snake head tail : unit =

35 let (x,y) = snake.(head) in

36 let (x’,y’) = snake.(tail) in

37 (* draw a new head *)

38 Oled.draw x y true;

39 (* the tail is erased to give the illusion of movement *)

40 Oled.draw x’ y’ false

41

42 let draw_apple x y : unit =

43 Oled.draw x y true

44
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45 (*** Functions of the synchronous execution engine ***)

46

47 (** Initialization of the synchronous program **)

48 let init_main () = Arduboy.init ()

49

50 (** Input function of each synchronous instant **)

51 let input_main () =

52 let l = Avr.digital_read Arduboy.button_left in

53 let r = Avr.digital_read Arduboy.button_right in

54 (max_size,bool_of_level l,bool_of_level r,64,32)

55

56 (** Output function of each synchronous instant **)

57 let output_main (head,tail,nx,ny,apple_x,apple_y,win) =

58 snake.(head) ← (nx,ny);
59 draw_snake head tail;

60 draw_apple apple_x apple_y;

61 Oled.flush ();

62 if win then

63 begin

64 (* Win *)

65 Arduboy.light_led Arduboy.green;

66 Avr.delay 2000;

67 raise Exit

68 end

69 else if eats_itself head tail then

70 begin

71 (* Lose *)

72 Arduboy.light_led Arduboy.red;

73 Avr.delay 2000;

74 raise Exit

75 end
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Abstract

Microcontrollers are programmable integrated circuit embedded in multiple everyday objects. Due
to their scarce resources, they often are programmed using low-level languages such as C or assem-
bly languages. These languages don’t provide the same abstractions and guarantees than higher-level
programming languages, such as OCaml. This thesis offers a set of solutions aimed at extending mi-
crocontrollers programming with high-level programming paradigms. These solutions provide multiple
abstraction layers which, in particular, enable the development of portable programs, free from the spe-
cifics of the hardware. We thus introduce a layer of hardware abstraction through an OCaml virtual
machine, that enjoys the multiple benefits of the language, while keeping a low memory footprint. We
then extend the OCaml language with a synchronous programming model inspired from the Lustre
dataflow language, which offers abstraction over the concurrent aspects of a program. The language is
then formally specified and various typing properties are proven. Moreover, the abstractions offered by
our work induce portability of some static analyses that can be done over the bytecode of programs.
We thus propose such an analysis that consists of estimating the worst case execution time (WCET) of
a synchronous program. All the propositions of this thesis form a complete development toolchain, and
several practical examples that illustrate the benefits of the given solutions are thus provided.
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